Skip to main content
Log in

Wave Function of the Universe, Path Integrals and Gauge Invariance

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

—The paper is devoted to some of the difficulties which the Wheeler-DeWitt quantum geometrodynamics encountered, in particular, a strong mathematical proof that this theory is gauge-invariant, the definition of the wave function of the Universe through a path integral and the illegality of asymptotic boundary conditions in quantum gravity, the derivation of the Wheeler-DeWitt equation from the path integral and the equivalence of the Dirac quantization scheme with other approaches, the problem of definition of physical states in quantum gravity, possible realizations of the Everett concept of “relative states.” These problems are rarely discussed in the literature. They are related to the guiding idea that quantum theory of gravity must be gauge-invariant. It will lead to the question if it is possible to achieve this goal in a mathematically consistent way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory,” Phys. Rev. 160, 1113 (1967).

    Article  ADS  Google Scholar 

  2. P. W. Higgs, “Integration of secondary constraints in quantized general relativity,” Phys. Rev. Lett. 1, 373 (1958).

    Article  ADS  Google Scholar 

  3. C. Kiefer, Quantum Gravity (Oxford University Press, Oxford, 2007).

    Book  Google Scholar 

  4. J. B. Hartle, “Quantum cosmology: Problems for the 21st Century,” in Proceedings of the 11th Nishinomiya-Yukawa Symposium, Ed. K. Kikkawa, H. Kunitomo, and H. Ohtsubo (World Scientific, Singapore, 1998).

    Google Scholar 

  5. C. Kiefer, “Conceptual issues in quantum cosmology,” in Towards Quantum Gravity. Proceeding of the XXXV International Winter School on Theoretical Physics Held in Polanica, Poland, 2–11 February 1999, Ed. by J. Kowalski-Glikman (Lecture Notes in Physics, v. 541, Springer, Berlin, 2000).

    Google Scholar 

  6. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2007).

    MATH  Google Scholar 

  7. C. Rovelli, “The strange equation of quantum gravity,” Class. Quantum Grav. 32, 124005 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. A.M. Dirac, “Generalized Hamiltonian dynamics,” Can. J. Math. 2, 129 (1950).

    Article  MathSciNet  Google Scholar 

  9. P. A.M. Dirac, “Generalized Hamiltonian dynamics,” Proc. Roy. Soc. A 246, 326 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  10. S. W. Hawking and D. N. Page, “Operator ordering and the flatness of the Universe,” Nucl. Phys. B 264, 185 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. O. Barvinsky, “Operator ordering in theories subject to constraints of the gravitational type,” Class. Quantum Grav. 10, 1985 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. B. Hartle and S.W. Hawking, “Wave function of the Universe,” Phys. Rev. D 28, 2960 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  13. S. W. Hawking, “The path-integral approach to quantum gravity,” in General Relativity. An Einstein Centenary Survey, Ed. by S.W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979).

    MATH  Google Scholar 

  14. L. D. Faddeev and V. N. Popov, “Feynman diagrams for the Yang-Mills field,” Phys. Lett. B 25, 29 (1967).

    Article  ADS  Google Scholar 

  15. L. D. Faddeev, “The Feynman integral for singular Lagrangians,” Theor. Math. Phys. 1, 1 (1969).

    Article  MathSciNet  Google Scholar 

  16. E. S. Fradkin and G. A. Vilkovisky, “Quantization of relativistic systems with constraints,” Phys. Lett. B 55, 224 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  17. I. A. Batalin and G. A. Vilkovisky, “Relativistic Smatrix of dynamical systems with boson and fermion constraints,” Phys. Lett. B 69, 309 (1977).

    Article  ADS  Google Scholar 

  18. E. S. Fradkin and T. E. Fradkina, “Quantization of relativistic systems with boson and fermion firstand second-class constraints,” Phys. Lett. B 72, 343 (1978).

    Article  ADS  Google Scholar 

  19. I. A. Batalin and G. A. Vilkovisky, “Gauge algebra and quantization,” Phys. Lett. B 102, 27 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. O. Barvinskiy and V. N. Ponomariov, “Canonical quantization of gravity and quantum geometrodynamics,” Izv. Vuzov, Fizika 3, 37 (1986).

    Google Scholar 

  21. A. O. Barvinskiy and V. N. Ponomariov, “Quantum geometrodynamics: the path integral and the initial value problem for the wave function of the Universe,” Phys. Lett. B 167, 289 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. J. Halliwell, “Derivation of the Wheeler–DeWitt equation from a path integral for minisuperspace models,” Phys. Rev. D 38, 2468 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  23. V. A. Savchenko, T. P. Shestakova, and G. M. Vereshkov, “Quantum geometrodynamics of the Bianchi IX model in extended phase space,” Int. J. Mod. Phys. A 14, 4473 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  24. V. A. Savchenko, T. P. Shestakova, and G. M. Vereshkov, “The exact cosmological solution to the dynamical equations for the Bianchi IX model,” Int. J. Mod. Phys. A 15, 3207 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  25. V. A. Savchenko, T. P. Shestakova, and G. M. Vereshkov, “Quantum geometrodynamics in extended phase space—I. Physical problems of interpretation and mathematical problems of gauge invariance,” Grav. Cosmol. 7, 18 (2001).

    MathSciNet  MATH  Google Scholar 

  26. V. A. Savchenko, T. P. Shestakova, and G. M. Vereshkov, “Quantum geometrodynamics in extended phase space—II. The Bianchi IX model,” Grav. Cosmol. 7, 102 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  27. M. Hennaux, “Hamiltonian form of the path integral for theories with a gauge freedom,” Phys. Rep. 126, 1 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  28. T. P. Shestakova, “The role of BRST charge as a generator of gauge transformations in quantization of gauge theories and gravity,” Tomsk State Pedagogical University Bulletin 153, 224 (2014).

    Google Scholar 

  29. T. P. Shestakova and C. Simeone, “The problem of time and gauge invariance in the quantization of cosmological models. I. Canonical quantization methods,” Grav. Cosmol. 10, 161 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  30. T. P. Shestakova and C. Simeone, “The problem of time and gauge invariance in the quantization of cosmologicalmodels. II. Recent developments in the path integral approach,” Grav. Cosmol. 10, 257 (2004).

    ADS  MATH  Google Scholar 

  31. L. D. Landau and E.M. Lifshitz, The Clssical Theory of Fields (Oxford, 1975).

    Google Scholar 

  32. H. Everett, “‘Relative state’ formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  33. T. P. Shestakova, “Is the Wheeler-DeWitt equation more fundamental than the Schro¨ dinger equation?” Int. J. Mod. Phys. D 27, 1841004 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  34. S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43, 199 (1975).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Shestakova.

Additional information

The present issue of the journal is No. 100 since it was founded in 1995.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakova, T.P. Wave Function of the Universe, Path Integrals and Gauge Invariance. Gravit. Cosmol. 25, 289–296 (2019). https://doi.org/10.1134/S0202289319040121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289319040121

Navigation