Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Spinning sum rules for the dimension-six SMEFT

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 September 2022
  • volume 2022, Article number: 30 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Spinning sum rules for the dimension-six SMEFT
Download PDF
  • Grant N. Remmen  ORCID: orcid.org/0000-0001-6569-88661,2 &
  • Nicholas L. Rodd3 
  • 93 Accesses

  • 4 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We construct new dispersive sum rules for the effective field theory of the standard model at mass dimension six. These spinning sum rules encode information about the spin of UV states: the sign of the IR Wilson coefficients carries a memory of the dominant spin in the UV completion. The sum rules are constructed for operators containing scalars and fermions, although we consider the dimension-six SMEFT exhaustively, outlining why equivalent relations do not hold for the remaining operators. As with any dimension-six dispersive argument, our conclusions are contingent on the absence of potential poles at infinity — so-called boundary terms — and we discuss in detail where these are expected to appear. There are a number of phenomenological applications of spinning sum rules, and as an example we explore the connection to the Peskin-Takeuchi parameters and, more generally, the set of oblique parameters in universal theories.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  2. B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: Higher dimension operators in the SM EFT, JHEP 08 (2017) 016 [Erratum ibid. 09 (2019) 019] [arXiv:1512.03433] [INSPIRE].

  3. T.N. Pham and T.N. Truong, Evaluation of the Derivative Quartic Terms of the Meson Chiral Lagrangian From Forward Dispersion Relation, Phys. Rev. D 31 (1985) 3027 [INSPIRE].

  4. B. Ananthanarayan, D. Toublan and G. Wanders, Consistency of the chiral pion pion scattering amplitudes with axiomatic constraints, Phys. Rev. D 51 (1995) 1093 [hep-ph/9410302] [INSPIRE].

  5. M.R. Pennington and J. Portoles, The Chiral Lagrangian parameters, ℓ1, ℓ2, are determined by the rho resonance, Phys. Lett. B 344 (1995) 399 [hep-ph/9409426] [INSPIRE].

  6. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying Models of New Physics via WW Scattering, Phys. Rev. Lett. 98 (2007) 041601 [hep-ph/0604255] [INSPIRE].

  8. A. Jenkins and D. O’Connell, The Story of O: Positivity constraints in effective field theories, hep-th/0609159 [INSPIRE].

  9. L. Vecchi, Causal versus analytic constraints on anomalous quartic gauge couplings, JHEP 11 (2007) 054 [arXiv:0704.1900] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A.V. Manohar and V. Mateu, Dispersion Relation Bounds for ππ Scattering, Phys. Rev. D 77 (2008) 094019 [arXiv:0801.3222] [INSPIRE].

  11. Y.-J. Wang, F.-K. Guo, C. Zhang and S.-Y. Zhou, Generalized positivity bounds on chiral perturbation theory, JHEP 07 (2020) 214 [arXiv:2004.03992] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev. D 98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].

  13. C. Zhang and S.-Y. Zhou, Positivity bounds on vector boson scattering at the LHC, Phys. Rev. D 100 (2019) 095003 [arXiv:1808.00010] [INSPIRE].

  14. G.N. Remmen and N.L. Rodd, Consistency of the Standard Model Effective Field Theory, JHEP 12 (2019) 032 [arXiv:1908.09845] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. Q. Bi, C. Zhang and S.-Y. Zhou, Positivity constraints on aQGC: carving out the physical parameter space, JHEP 06 (2019) 137 [arXiv:1902.08977] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP 05 (2010) 095 [Erratum ibid. 11 (2011) 128] [arXiv:0912.4258] [INSPIRE].

  17. G. Dvali, A. Franca and C. Gomez, Road Signs for UV-Completion, arXiv:1204.6388 [INSPIRE].

  18. C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Massive Galileon Positivity Bounds, JHEP 09 (2017) 072 [arXiv:1702.08577] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Chandrasekaran, G.N. Remmen and A. Shahbazi-Moghaddam, Higher-Point Positivity, JHEP 11 (2018) 015 [arXiv:1804.03153] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. M. Herrero-Valea, I. Timiryasov and A. Tokareva, To Positivity and Beyond, where Higgs-Dilaton Inflation has never gone before, JCAP 11 (2019) 042 [arXiv:1905.08816] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. X. Li, H. Xu, C. Yang, C. Zhang and S.-Y. Zhou, Positivity in Multifield Effective Field Theories, Phys. Rev. Lett. 127 (2021) 121601 [arXiv:2101.01191] [INSPIRE].

  22. G.N. Remmen, Amplitudes and the Riemann Zeta Function, Phys. Rev. Lett. 127 (2021) 241602 [arXiv:2108.07820] [INSPIRE].

  23. N. Arkani-Hamed, T.-C. Huang and Y.-T. Huang, The EFT-Hedron, JHEP 05 (2021) 259 [arXiv:2012.15849] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. B. Bellazzini, J. Elias Miró, R. Rattazzi, M. Riembau and F. Riva, Positive moments for scattering amplitudes, Phys. Rev. D 104 (2021) 036006 [arXiv:2011.00037] [INSPIRE].

  25. A.J. Tolley, Z.-Y. Wang and S.-Y. Zhou, New positivity bounds from full crossing symmetry, JHEP 05 (2021) 255 [arXiv:2011.02400] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Caron-Huot and V. Van Duong, Extremal Effective Field Theories, JHEP 05 (2021) 280 [arXiv:2011.02957] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. B. Bellazzini, M. Riembau and F. Riva, The IR-Side of Positivity Bounds, arXiv:2112.12561 [INSPIRE].

  28. S. Caron-Huot, D. Mazac, L. Rastelli and D. Simmons-Duffin, Sharp boundaries for the swampland, JHEP 07 (2021) 110 [arXiv:2102.08951] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Z. Komargodski and A. Schwimmer, On Renormalization Group Flows in Four Dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. A. Adams, A. Jenkins and D. O’Connell, Signs of analyticity in fermion scattering, arXiv:0802.4081 [INSPIRE].

  32. B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP 02 (2017) 034 [arXiv:1605.06111] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP 11 (2017) 020 [arXiv:1706.03070] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G.N. Remmen and N.L. Rodd, Flavor Constraints from Unitarity and Analyticity, Phys. Rev. Lett. 125 (2020) 081601 [Erratum ibid. 127 (2021) 149901] [arXiv:2004.02885] [INSPIRE].

  35. G.N. Remmen and N.L. Rodd, Signs, spin, SMEFT: Sum rules at dimension six, Phys. Rev. D 105 (2022) 036006 [arXiv:2010.04723] [INSPIRE].

  36. C. Cheung and G.N. Remmen, Positive Signs in Massive Gravity, JHEP 04 (2016) 002 [arXiv:1601.04068] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  37. C. de Rham, S. Melville and A.J. Tolley, Improved Positivity Bounds and Massive Gravity, JHEP 04 (2018) 083 [arXiv:1710.09611] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  38. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality Constraints on Corrections to the Graviton Three-Point Coupling, JHEP 02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. X.O. Camanho, G. Lucena Gómez and R. Rahman, Causality Constraints on Massive Gravity, Phys. Rev. D 96 (2017) 084007 [arXiv:1610.02033] [INSPIRE].

  40. B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond Positivity Bounds and the Fate of Massive Gravity, Phys. Rev. Lett. 120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].

  41. J. Bonifacio and K. Hinterbichler, Bounds on Amplitudes in Effective Theories with Massive Spinning Particles, Phys. Rev. D 98 (2018) 045003 [arXiv:1804.08686] [INSPIRE].

  42. J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev. D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].

  43. C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: Positivity Bounds for Particles with Spin, JHEP 03 (2018) 011 [arXiv:1706.02712] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Hinterbichler, A. Joyce and R.A. Rosen, Massive Spin-2 Scattering and Asymptotic Superluminality, JHEP 03 (2018) 051 [arXiv:1708.05716] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  45. C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity Bounds for Massive Spin-1 and Spin-2 Fields, JHEP 03 (2019) 182 [arXiv:1804.10624] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Massive Higher Spins: Effective Theory and Consistency, JHEP 10 (2019) 189 [arXiv:1903.08664] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. L. Alberte, C. de Rham, A. Momeni, J. Rumbutis and A.J. Tolley, Positivity Constraints on Interacting Spin-2 Fields, JHEP 03 (2020) 097 [arXiv:1910.11799] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. L. Alberte, C. de Rham, A. Momeni, J. Rumbutis and A.J. Tolley, Positivity Constraints on Interacting Pseudo-Linear Spin-2 Fields, JHEP 07 (2020) 121 [arXiv:1912.10018] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Z.-Y. Wang, C. Zhang and S.-Y. Zhou, Generalized elastic positivity bounds on interacting massive spin-2 theories, JHEP 04 (2021) 217 [arXiv:2011.05190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, QED positivity bounds, Phys. Rev. D 103 (2021) 125020 [arXiv:2012.05798] [INSPIRE].

  51. M. Gorghetto, G. Perez, I. Savoray and Y. Soreq, Probing CP-violation in photon self-interactions with cavities, JHEP 10 (2021) 056 [arXiv:2103.06298] [INSPIRE].

    Article  ADS  Google Scholar 

  52. D. Baumann, D. Green, H. Lee and R.A. Porto, Signs of Analyticity in Single-Field Inflation, Phys. Rev. D 93 (2016) 023523 [arXiv:1502.07304] [INSPIRE].

  53. D. Baumann, D. Green and T. Hartman, Dynamical Constraints on RG Flows and Cosmology, JHEP 12 (2019) 134 [arXiv:1906.10226] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. T. Grall and S. Melville, Positivity bounds without boosts: New constraints on low energy effective field theories from the UV, Phys. Rev. D 105 (2022) L121301 [arXiv:2102.05683] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C. de Rham, S. Melville and J. Noller, Positivity bounds on dark energy: when matter matters, JCAP 08 (2021) 018 [arXiv:2103.06855] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  56. T. Grall and S. Melville, Inflation in motion: unitarity constraints in effective field theories with (spontaneously) broken Lorentz symmetry, JCAP 09 (2020) 017 [arXiv:2005.02366] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. S. Melville and E. Pajer, Cosmological Cutting Rules, JHEP 05 (2021) 249 [arXiv:2103.09832] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. B. Bellazzini, C. Cheung and G.N. Remmen, Quantum Gravity Constraints from Unitarity and Analyticity, Phys. Rev. D 93 (2016) 064076 [arXiv:1509.00851] [INSPIRE].

  59. C. Cheung and G.N. Remmen, Positivity of Curvature-Squared Corrections in Gravity, Phys. Rev. Lett. 118 (2017) 051601 [arXiv:1608.02942] [INSPIRE].

  60. A. Gruzinov and M. Kleban, Causality Constrains Higher Curvature Corrections to Gravity, Class. Quant. Grav. 24 (2007) 3521 [hep-th/0612015] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  61. A. Guerrieri, J. Penedones and P. Vieira, Where Is String Theory in the Space of Scattering Amplitudes?, Phys. Rev. Lett. 127 (2021) 081601 [arXiv:2102.02847] [INSPIRE].

  62. C. de Rham, A.J. Tolley and J. Zhang, Causality Constraints on Gravitational Effective Field Theories, Phys. Rev. Lett. 128 (2022) 131102 [arXiv:2112.05054] [INSPIRE].

  63. S. Caron-Huot, Y.-Z. Li, J. Parra-Martinez and D. Simmons-Duffin, Causality constraints on corrections to Einstein gravity, arXiv:2201.06602 [INSPIRE].

  64. L.-Y. Chiang, Y.-t. Huang, W. Li, L. Rodina and H.-C. Weng, (Non)-projective bounds on gravitational EFT, arXiv:2201.07177 [INSPIRE].

  65. C. Cheung and G.N. Remmen, Infrared Consistency and the Weak Gravity Conjecture, JHEP 12 (2014) 087 [arXiv:1407.7865] [INSPIRE].

    Article  ADS  Google Scholar 

  66. B. Bellazzini, M. Lewandowski and J. Serra, Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity, Phys. Rev. Lett. 123 (2019) 251103 [arXiv:1902.03250] [INSPIRE].

  67. C. Cheung, J. Liu and G.N. Remmen, Entropy Bounds on Effective Field Theory from Rotating Dyonic Black Holes, Phys. Rev. D 100 (2019) 046003 [arXiv:1903.09156] [INSPIRE].

  68. C. Cheung, J. Liu and G.N. Remmen, Proof of the Weak Gravity Conjecture from Black Hole Entropy, JHEP 10 (2018) 004 [arXiv:1801.08546] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  69. A.M. Charles, The Weak Gravity Conjecture, RG Flows, and Supersymmetry, arXiv:1906.07734 [INSPIRE].

  70. C. De Rham, L. Heisenberg and A.J. Tolley, Spin-2 fields and the weak gravity conjecture, Phys. Rev. D 100 (2019) 104033 [arXiv:1812.01012] [INSPIRE].

  71. S. Andriolo, T.-C. Huang, T. Noumi, H. Ooguri and G. Shiu, Duality and axionic weak gravity, Phys. Rev. D 102 (2020) 046008 [arXiv:2004.13721] [INSPIRE].

  72. L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Positivity Bounds and the Massless Spin-2 Pole, Phys. Rev. D 102 (2020) 125023 [arXiv:2007.12667] [INSPIRE].

  73. N. Arkani-Hamed, Y.-t. Huang, J.-Y. Liu and G.N. Remmen, Causality, unitarity, and the weak gravity conjecture, JHEP 03 (2022) 083 [arXiv:2109.13937] [INSPIRE].

  74. I. Low, R. Rattazzi and A. Vichi, Theoretical Constraints on the Higgs Effective Couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  75. A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the Standard Model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].

    Article  ADS  Google Scholar 

  76. B. Bellazzini, L. Martucci and R. Torre, Symmetries, Sum Rules and Constraints on Effective Field Theories, JHEP 09 (2014) 100 [arXiv:1405.2960] [INSPIRE].

  77. Y. Ema, R. Kitano and T. Terada, Unitarity constraint on the Kähler curvature, JHEP 09 (2018) 075 [arXiv:1807.06940] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  78. J. Gu and L.-T. Wang, Sum Rules in the Standard Model Effective Field Theory from Helicity Amplitudes, JHEP 03 (2021) 149 [arXiv:2008.07551] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. C. Zhang and S.-Y. Zhou, Convex Geometry Perspective on the (Standard Model) Effective Field Theory Space, Phys. Rev. Lett. 125 (2020) 201601 [arXiv:2005.03047] [INSPIRE].

  80. B. Fuks, Y. Liu, C. Zhang and S.-Y. Zhou, Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states, Chin. Phys. C 45 (2021) 023108 [arXiv:2009.02212] [INSPIRE].

  81. K. Yamashita, C. Zhang and S.-Y. Zhou, Elastic positivity vs extremal positivity bounds in SMEFT: a case study in transversal electroweak gauge-boson scatterings, JHEP 01 (2021) 095 [arXiv:2009.04490] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. J. Gu, L.-T. Wang and C. Zhang, Unambiguously Testing Positivity at Lepton Colliders, Phys. Rev. Lett. 129 (2022) 011805 [arXiv:2011.03055] [INSPIRE].

  83. T. Trott, Causality, unitarity and symmetry in effective field theory, JHEP 07 (2021) 143 [arXiv:2011.10058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. Q. Bonnefoy, E. Gendy and C. Grojean, Positivity bounds on Minimal Flavor Violation, JHEP 04 (2021) 115 [arXiv:2011.12855] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. J. Davighi, S. Melville and T. You, Natural selection rules: new positivity bounds for massive spinning particles, JHEP 02 (2022) 167 [arXiv:2108.06334] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  86. C. Zhang, SMEFTs living on the edge: determining the UV theories from positivity and extremality, arXiv:2112.11665 [INSPIRE].

  87. X. Li and S. Zhou, Origin of Neutrino Masses on the Convex Cone of Positivity Bounds, arXiv:2202.12907 [INSPIRE].

  88. M. Chala and J. Santiago, Positivity bounds in the standard model effective field theory beyond tree level, Phys. Rev. D 105 (2022) L111901 [arXiv:2110.01624] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. A. Azatov, D. Ghosh and A.H. Singh, Four-fermion operators at dimension 6: Dispersion relations and UV completions, Phys. Rev. D 105 (2022) 115019 [arXiv:2112.02302] [INSPIRE].

  90. C.W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10 (2020) 174 [arXiv:2005.00059] [INSPIRE].

    Article  ADS  Google Scholar 

  91. H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104 (2021) 015026 [arXiv:2005.00008] [INSPIRE].

  92. C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for scalar field theories, Phys. Rev. D 96 (2017) 081702 [arXiv:1702.06134] [INSPIRE].

  93. Z. Bern, D. Kosmopoulos and A. Zhiboedov, Gravitational effective field theory islands, low-spin dominance, and the four-graviton amplitude, J. Phys. A 54 (2021) 344002 [arXiv:2103.12728] [INSPIRE].

  94. M. Jacob and G.C. Wick, On the General Theory of Collisions for Particles with Spin, Annals Phys. 7 (1959) 404 [INSPIRE].

  95. M. Chala, G. Guedes, M. Ramos and J. Santiago, Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions. I, SciPost Phys. 11 (2021) 065 [arXiv:2106.05291] [INSPIRE].

  96. S. Das Bakshi, M. Chala, A. Díaz-Carmona and G. Guedes, Towards the renormalisation of the Standard Model effective field theory to dimension eight: Bosonic interactions. II, arXiv:2205.03301 [INSPIRE].

  97. J. Hořejší, Introduction to Electroweak Unification: Standard Model from Tree Unitarity, World Scientific, Singapore (1993) [DOI].

  98. C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York, U.S.A. (1980) [ISBN: 9780070663534].

  99. N. Arkani-Hamed, T.-C. Huang and Y.-t. Huang, Scattering amplitudes for all masses and spins, JHEP 11 (2021) 070 [arXiv:1709.04891] [INSPIRE].

  100. J. de Blas, J.C. Criado, M. Pérez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  101. J. Quevillon, C. Smith and S. Touati, Effective action for gauge bosons, Phys. Rev. D 99 (2019) 013003 [arXiv:1810.06994] [INSPIRE].

  102. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

  103. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

  104. I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].

  105. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

  106. CDF collaboration, High-precision measurement of the W boson mass with the CDF II detector, Science 376 (2022) 170 [INSPIRE].

  107. J.D. Wells and Z. Zhang, Effective theories of universal theories, JHEP 01 (2016) 123 [arXiv:1510.08462] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  108. G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The Minimal Set of Electroweak Precision Parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].

  109. C. Englert, G.F. Giudice, A. Greljo and M. Mccullough, The \( \hat{H} \)-Parameter: An Oblique Higgs View, JHEP 09 (2019) 041 [arXiv:1903.07725] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  110. J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].

    Article  ADS  Google Scholar 

  111. S. Weinberg, Precise relations between the spectra of vector and axial vector mesons, Phys. Rev. Lett. 18 (1967) 507 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA, 93106, USA

    Grant N. Remmen

  2. Department of Physics, University of California, Santa Barbara, CA, 93106, USA

    Grant N. Remmen

  3. Theoretical Physics Department, CERN, 1 Esplanade des Particules, CH-1211, Geneva 23, Switzerland

    Nicholas L. Rodd

Authors
  1. Grant N. Remmen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Nicholas L. Rodd
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Grant N. Remmen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2206.13524

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remmen, G.N., Rodd, N.L. Spinning sum rules for the dimension-six SMEFT. J. High Energ. Phys. 2022, 30 (2022). https://doi.org/10.1007/JHEP09(2022)030

Download citation

  • Received: 12 July 2022

  • Accepted: 11 August 2022

  • Published: 05 September 2022

  • DOI: https://doi.org/10.1007/JHEP09(2022)030

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Effective Field Theories
  • SMEFT
  • Scattering Amplitudes
  • Electroweak Precision Physics

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature