Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Cornering dimension-6 HV V interactions at high energy LHC: the role of event ratios
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Sensitivity to new physics in final states with multiple gauge and Higgs bosons

06 September 2022

A. Cappati, R. Covarelli, … M. Zaro

Probing 6D operators at future e−e+ colliders

14 May 2018

Wen Han Chiu, Sze Ching Leung, … Lian-Tao Wang

Off-shell Higgs production at the LHC as a probe of the trilinear Higgs coupling

03 February 2022

Ulrich Haisch & Gabriël Koole

Precision SMEFT bounds from the VBF Higgs at high transverse momentum

14 April 2021

Jack Y. Araz, Shankha Banerjee, … Michael Spannowsky

On the impact of non-factorisable corrections in VBF single and double Higgs production

21 October 2020

Frédéric A. Dreyer, Alexander Karlberg & Lorenzo Tancredi

Sensitivity to triple Higgs couplings via di-Higgs production in the 2HDM at $$e^+e^-$$ e + e - colliders

17 October 2021

F. Arco, S. Heinemeyer & M. J. Herrero

Precise predictions for V + 2 jet backgrounds in searches for invisible Higgs decays

16 January 2023

J. M. Lindert, S. Pozzorini & M. Schönherr

On the future of Higgs, electroweak and diboson measurements at lepton colliders

16 December 2019

Jorge de Blas, Gauthier Durieux, … Ayan Paul

Exploring the low $$\tan \beta $$ tan β region of two Higgs doublet models at the LHC

13 September 2021

Wei Su, Martin White, … Yongcheng Wu

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 10 September 2015

Cornering dimension-6 HV V interactions at high energy LHC: the role of event ratios

  • Shankha Banerjee1,
  • Tanumoy Mandal1,
  • Bruce Mellado2 &
  • …
  • Biswarup Mukhopadhyaya1 

Journal of High Energy Physics volume 2015, Article number: 57 (2015) Cite this article

  • 257 Accesses

  • 19 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We suggest a way of improving the probes on dimension-6 CP-conserving HV V interactions (V = W,Z,γ),fromtheLHCdataontheHiggsbosontobeavailableinthe 14 TeV run with an integrated luminosity of 3000 fb−1. We find that the ratios of total rates in different channels can be quite useful in this respect. This includes ratios of event rates in (a) different final states for the Higgs produced by the same production mechanism, and (b) the same final state from two different production modes. While most theoretical uncertainties cancel in the former, the latter helps in the case of those operators which shift the numerator and denominator in opposite directions. Our analysis, incorporating theoretical, systematic and statistical uncertain, leads to projected limits that are better than the strongest ones obtained so far from precision electroweak as well as LHC Higgs data. Moreover, values of the coefficients of the dimension-6 operators, which are allowed in disjoint intervals, can have their ranges narrowed down substantially in our approach.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].

    ADS  Google Scholar 

  4. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  5. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].

    Article  ADS  Google Scholar 

  7. B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the scalar boson couplings, arXiv:1306.0006 [INSPIRE].

  11. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014)151 [arXiv:1308.2803] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.B. Einhorn and J. Wudka, Higgs-boson couplings beyond the standard model, Nucl. Phys. B 877 (2013) 792 [arXiv:1308.2255] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].

    ADS  Google Scholar 

  15. S. Willenbrock and C. Zhang, Effective field theory beyond the standard model, Ann. Rev. Nucl. Part. Sci. 64 (2014) 83 [arXiv:1401.0470] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Ellis, V. Sanz and T. You, Complete Higgs sector constraints on dimension-6 operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].

    Article  ADS  Google Scholar 

  17. H. Belusca-Maito, Effective Higgs Lagrangian and constraints on Higgs couplings, arXiv:1404.5343 [INSPIRE].

  18. R.S. Gupta, A. Pomarol and F. Riva, BSM primary effects, Phys. Rev. D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].

    ADS  Google Scholar 

  19. E. Masso, An effective guide to beyond the standard model physics, JHEP 10 (2014) 128 [arXiv:1406.6376] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].

    ADS  Google Scholar 

  21. C. Englert and M. Spannowsky, Effective theories and measurements at colliders, Phys. Lett. B 740 (2015) 8 [arXiv:1408.5147] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Ellis, V. Sanz and T. You, The effective standard model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].

    Article  Google Scholar 

  23. R. Edezhath, Dimension-6 operator constraints from boosted VBF Higgs, arXiv:1501.00992 [INSPIRE].

  24. M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs effective theory: extended Higgs sectors, arXiv:1502.07352 [INSPIRE].

  25. Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].

    ADS  Google Scholar 

  26. M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. de Blas, Electroweak limits on physics beyond the standard model, EPJ Web Conf. 60 (2013) 19008 [arXiv:1307.6173] [INSPIRE].

    Article  Google Scholar 

  28. C.-Y. Chen, S. Dawson and C. Zhang, Electroweak effective operators and Higgs physics, Phys. Rev. D 89 (2014) 015016 [arXiv:1311.3107] [INSPIRE].

    ADS  Google Scholar 

  29. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Englert et al., Precision measurements of Higgs couplings: implications for new physics scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Trott, On the consistent use of constructed observables, JHEP 02 (2015) 046 [arXiv:1409.7605] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    Article  ADS  Google Scholar 

  33. B. Henning, X. Lu and H. Murayama, How to use the standard model effective field theory, arXiv:1412.1837 [INSPIRE].

  34. J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].

    Article  Google Scholar 

  35. L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].

    Article  ADS  Google Scholar 

  37. B. Bhattacherjee, T. Modak, S.K. Patra and R. Sinha, Probing Higgs couplings at LHC and beyond, arXiv:1503.08924 [INSPIRE].

  38. CMS collaboration, Constraints on the spin-parity and anomalous HV V couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].

  39. G. Amar et al., Exploration of the tensor structure of the Higgs boson coupling to weak bosons in e + e − collisions, JHEP 02 (2015) 128 [arXiv:1405.3957] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Kumar and P. Poulose, Influence of anomalous VVH and VVHH on determination of Higgs self couplings at ILC, arXiv:1408.3563 [INSPIRE].

  41. N. Craig, M. Farina, M. McCullough and M. Perelstein, Precision Higgsstrahlung as a probe of new physics, JHEP 03 (2015) 146 [arXiv:1411.0676] [INSPIRE].

    Article  Google Scholar 

  42. M. Beneke, D. Boito and Y.-M. Wang, Signatures of anomalous Higgs couplings in angular asymmetries of H → Zℓ+ℓ− and e + e − → HZ, arXiv:1411.3942 [INSPIRE].

  43. S. Kumar, P. Poulose and S. Sahoo, Study of Higgs-gauge boson anomalous couplings through e − e + → W − W + H at ILC, Phys. Rev. D 91 (2015) 073016 [arXiv:1501.03283] [INSPIRE].

    ADS  Google Scholar 

  44. H.-Y. Ren, New physics searches with Higgs-photon associated production at the Higgs factory, arXiv:1503.08307 [INSPIRE].

  45. T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].

    Article  ADS  Google Scholar 

  46. C. Bernaciak, M.S.A. Buschmann, A. Butter and T. Plehn, Fox-Wolfram moments in Higgs physics, Phys. Rev. D 87 (2013) 073014 [arXiv:1212.4436] [INSPIRE].

    ADS  Google Scholar 

  47. C. Bernaciak, B. Mellado, T. Plehn, P. Schichtel and X. Ruan, Improving Higgs plus jets analyses through Fox-Wolfram moments, Phys. Rev. D 89 (2014) 053006 [arXiv:1311.5891] [INSPIRE].

    ADS  Google Scholar 

  48. S.S. Biswal, R.M. Godbole, B. Mellado and S. Raychaudhuri, Azimuthal angle probe of anomalous HWW couplings at a high energy ep collider, Phys. Rev. Lett. 109 (2012) 261801 [arXiv:1203.6285] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Djouadi, R.M. Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs boson via jet kinematics in vector boson fusion, Phys. Lett. B 723 (2013) 307 [arXiv:1301.4965] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].

    Article  ADS  Google Scholar 

  52. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  53. K. Hagiwara, R. Szalapski and D. Zeppenfeld, Anomalous Higgs boson production and decay, Phys. Lett. B 318 (1993) 155 [hep-ph/9308347] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M.C. Gonzalez-Garcia, Anomalous Higgs couplings, Int. J. Mod. Phys. A 14 (1999) 3121 [hep-ph/9902321] [INSPIRE].

    Article  ADS  Google Scholar 

  55. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. M.B. Einhorn and J. Wudka, The bases of effective field theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Phys. Lett. B 732 (2014) 8 [arXiv:1402.3051] [INSPIRE].

  58. CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, Phys. Lett. B 726 (2013) 587 [arXiv:1307.5515] [INSPIRE].

  59. LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].

  60. CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].

  61. ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s}=7 \) and 8 TeV in the ATLAS experiment, ATLAS-CONF-2015-007, CERN, Geneva Switzerland (2015).

  62. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  63. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  64. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  65. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].

  66. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  67. LHC Higgs Cross Section Working Group webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  68. ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014, CERN, Geneva Switzerland (2013).

  69. ATLAS collaboration, HL-LHC projections for signal and background yield measurements of the H → γγ when the Higgs boson is produced in association with t quarks, W or Z bosons, ATL-PHYS-PUB-2014-012, CERN, Geneva Switzerland (2014).

  70. ATLAS collaboration, Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 112015 [arXiv:1408.7084] [INSPIRE].

  71. ATLAS collaboration, Observation and measurement of Higgs boson decays to W W ∗ with the ATLAS detector, Phys. Rev. D 92 (2015) 012006 [arXiv:1412.2641] [INSPIRE].

  72. CMS collaboration, Observation of the diphoton decay of the Higgs boson and measurement of its properties, Eur. Phys. J. C 74 (2014) 3076 [arXiv:1407.0558] [INSPIRE].

  73. CMS collaboration, Precise determination of the mass of the Higgs boson and studies of the compatibility of its couplings with the standard model, CMS-PAS-HIG-14-009, CERN, Geneva Switzerland (2014).

  74. I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, Phys. Rev. D 85 (2012) 034011 [arXiv:1107.2117] [INSPIRE].

    ADS  Google Scholar 

  75. A. Kruse, A.S. Cornell, M. Kumar, B. Mellado and X. Ruan, Probing the Higgs boson via vector boson fusion with single jet tagging at the LHC, Phys. Rev. D 91 (2015) 053009 [arXiv:1412.4710] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Regional Centre for Accelerator-based Particle Physics, Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad, 211019, India

    Shankha Banerjee, Tanumoy Mandal & Biswarup Mukhopadhyaya

  2. School of Physics, University of the Witwatersrand, Johannesburg, 2050, South Africa

    Bruce Mellado

Authors
  1. Shankha Banerjee
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tanumoy Mandal
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Bruce Mellado
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Biswarup Mukhopadhyaya
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Shankha Banerjee.

Additional information

ArXiv ePrint: 1505.00226

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Mandal, T., Mellado, B. et al. Cornering dimension-6 HV V interactions at high energy LHC: the role of event ratios. J. High Energ. Phys. 2015, 57 (2015). https://doi.org/10.1007/JHEP09(2015)057

Download citation

  • Received: 08 May 2015

  • Revised: 28 July 2015

  • Accepted: 20 August 2015

  • Published: 10 September 2015

  • DOI: https://doi.org/10.1007/JHEP09(2015)057

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Beyond Standard Model
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.