Skip to main content
Log in

Neutralino dark matter confronted by the LHC constraints on electroweak SUSY signals

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The supersymmetric particles (sparticles) belonging exclusively to the electroweak sector of the minimal supersymmetric standard model (MSSM) may hold the key to the observed dark matter relic density in the universe even if all strongly interacting sparticles are very heavy. The importance of the light EW sparticles in DM physics and in producing spectacular collider signals is emphasized. It is shown that even the preliminary data on the direct searches of these sparticles at the LHC, significantly constrain the parameter space of the MSSM compatible with the observed relic density and provide useful hints about the future search prospects. If in addition to the electroweak sparticles the gluinos are also within the reach of the LHC experiments, then the gluino mass limits in the light slepton scenario obtained via the canonical jets + / channel may be relaxed by as much as 25 % compared to the existing limits. But the corresponding same sign dilepton (SSD) + jets + / signal will yield enhanced limits competitive with the strongest limits currently available. This is illustrated with the help of benchmark scenarios at the generator level using PYTHIA. If the gluinos are just beyond the current reach of the LHC, then the generic n-lepton + m-jets + missing energy signal may discriminate between different DM producing mechanisms by comparing the signals corresponding to different values of n. This is illustrated by simulating the signals for n = 0 and n = 2 (the SSD signal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  2. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  4. J. Wess and J. Bagger, Supersymmetry and supergravity, 2nd edition, Princeton University Press, Princeton U.S.A. (1991).

    Google Scholar 

  5. M. Drees, P. Roy and R.M. Godbole, Theory and phenomenology of sparticles, World Scientific, Singapore (2005).

    Google Scholar 

  6. W.L. Freedman and M.S. Turner, Measuring and understanding the universe, Rev. Mod. Phys. 75 (2003) 1433 [astro-ph/0308418] [INSPIRE].

    Article  ADS  Google Scholar 

  7. L. Roszkowski, Particle dark matter: a theorists perspective, Pramana 62 (2004) 389 [hep-ph/0404052] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  9. H. Baer and X. Tata, Dark matter and the LHC, in Physics at the Large Hadron Collider, Indian National Science Academy, A. Datta et al. eds., Springer, U.S.A. (2009), arXiv:0805.1905 [INSPIRE].

  10. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  11. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s} \)= 7 TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].

  12. ATLAS collaboration, Search for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 5.8 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collisions, ATLAS-CONF-2012-103 (2012).

  13. ATLAS collaboration, Search for supersymmetry at \( \sqrt{s} \) = 8 TeV in final states with jets, missing transverse momentum and one isolated lepton, ATLAS-CONF-2012-104 (2012).

  14. CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].

  15. CMS collaboration, Inclusive search for supersymmetry using the razor variables in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 111 (2013) 081802 [arXiv:1212.6961] [INSPIRE].

  16. CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at \( \sqrt{s} \) = 8 TeV, arXiv:1303.2985 [INSPIRE].

  17. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2012-109 (2012).

  18. ATLAS collaboration, Search for Supersymmetry in final states with two same-sign leptons, jets and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2012-105 (2012).

  19. P. Bechtle et al., What if the LHC does not find supersymmetry in the \( \sqrt{s} \) = 7 TeV run?, Phys. Rev. D 84 (2011) 011701 [arXiv:1102.4693] [INSPIRE].

    ADS  Google Scholar 

  20. S. Akula et al., Interpreting the first CMS and ATLAS SUSY results, Phys. Lett. B 699 (2011) 377 [arXiv:1103.1197] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Bhattacharyya, A. Choudhury and A. Datta, SUSY signals with small and large trilinear couplings at the LHC 7 TeV runs and neutralino dark matter, Phys. Rev. D 83 (2011) 115025 [arXiv:1104.0333] [INSPIRE].

    ADS  Google Scholar 

  22. O. Buchmueller et al., Supersymmetry in light of 1/fb of LHC data, Eur. Phys. J. C 72 (2012) 1878 [arXiv:1110.3568] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Heinemeyer, Implications of SUSY searches at the LHC for the ILC, arXiv:1202.1991 [INSPIRE].

  25. R.M. Chatterjee, M. Guchait and D. Sengupta, Probing supersymmetry using event shape variables at 8 TeV LHC, Phys. Rev. D 86 (2012) 075014 [arXiv:1206.5770] [INSPIRE].

    ADS  Google Scholar 

  26. R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].

    Article  ADS  Google Scholar 

  27. D. Ghosh and D. Sengupta, Searching the sbottom in the four lepton channel at the LHC, Eur. Phys. J. C 73 (2013) 2342 [arXiv:1209.4310] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Cottin, M.A. Diaz, S. Olivares and N. Rojas, Neutrinos and the Higgs boson in split supersymmetry, arXiv:1211.1000 [INSPIRE].

  29. M. Chakraborti, U. Chattopadhyay and R.M. Godbole, Implication of a Higgs boson at 125 GeV within the stochastic superspace framework, Phys. Rev. D 87 (2013), no. 3 035022 [arXiv:1211.1549] [INSPIRE].

  30. P. Bechtle et al., MSSM interpretations of the LHC discovery: light or heavy higgs?, Eur. Phys. J. C 73 (2013) 2354 [arXiv:1211.1955] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Dighe, D. Ghosh, K.M. Patel and S. Raychaudhuri, Testing times for supersymmetry: looking under the lamp post, arXiv:1303.0721 [INSPIRE].

  32. D. Albornoz Vasquez, G. Bélanger and C. Boehm, Revisiting light neutralino scenarios in the MSSM, Phys. Rev. D 84 (2011) 095015 [arXiv:1108.1338] [INSPIRE].

    ADS  Google Scholar 

  33. A. Arbey, M. Battaglia and F. Mahmoudi, Implications of LHC searches on SUSY particle spectra: the pMSSM parameter space with neutralino dark matter, Eur. Phys. J. C 72 (2012) 1847 [arXiv:1110.3726] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A.J. Williams, C. Boehm, S.M. West and D.A. Vasquez, Regenerating WIMPs in the light of direct and indirect detection, Phys. Rev. D 86 (2012) 055018 [arXiv:1204.3727] [INSPIRE].

    ADS  Google Scholar 

  35. A. Arbey, M. Battaglia and F. Mahmoudi, Light neutralino dark matter in the pMSSM: implications of LEP, LHC and dark matter searches on SUSY particle spectra, Eur. Phys. J. C 72 (2012) 2169 [arXiv:1205.2557] [INSPIRE].

    Article  ADS  Google Scholar 

  36. W. Wang, A comparative study of dark matter in the MSSM and its singlet extensions: a mini review, Adv. High Energy Phys. 2012 (2012) 216941 [arXiv:1205.5081] [INSPIRE].

    Google Scholar 

  37. C. Boehm, P.S.B. Dev, A. Mazumdar and E. Pukartas, Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck Data, JHEP 06 (2013) 113 [arXiv:1303.5386] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Scopel, N. Fornengo and A. Bottino, Embedding the 125 GeV Higgs boson measured at the LHC in an effective MSSM: possible implications for neutralino dark matter, Phys. Rev. D 88 (2013) 023506 [arXiv:1304.5353] [INSPIRE].

    ADS  Google Scholar 

  39. G. Bélanger, S. Biswas, C. Boehm and B. Mukhopadhyaya, Light neutralino dark matter in the MSSM and its implication for LHC searches for staus, JHEP 12 (2012) 076 [arXiv:1206.5404] [INSPIRE].

    Article  Google Scholar 

  40. G. Arcadi, R. Catena and P. Ullio, Dark matter signals at the LHC: forecasts from ton-scale direct detection experiments, arXiv:1211.5129 [INSPIRE].

  41. A. Choudhury and A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals, JHEP 06 (2012) 006 [arXiv:1203.4106] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Akula, D. Feldman, Z. Liu, P. Nath and G. Peim, New constraints on dark matter from CMS and ATLAS data, Mod. Phys. Lett. A 26 (2011) 1521 [arXiv:1103.5061] [INSPIRE].

    Article  ADS  Google Scholar 

  43. N. Bhattacharyya, A. Choudhury and A. Datta, Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data, Phys. Rev. D 84 (2011) 095006 [arXiv:1107.1997] [INSPIRE].

    ADS  Google Scholar 

  44. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  45. K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, J. Phys. Conf. Ser. 384 (2012) 012010 [arXiv:1202.2324] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D. Ghosh, M. Guchait, S. Raychaudhuri and D. Sengupta, How constrained is the cMSSM?, Phys. Rev. D 86 (2012) 055007 [arXiv:1205.2283] [INSPIRE].

    ADS  Google Scholar 

  47. A. Fowlie et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].

    ADS  Google Scholar 

  48. M. Cannoni, O. Panella, M. Pioppi and M. Santoni, Probing dark matter and CMSSM with same-sign dilepton searches at the LHC, Phys. Rev. D 86 (2012) 037702 [arXiv:1206.5759] [INSPIRE].

    ADS  Google Scholar 

  49. P. Nath, SUGRA grand unification, LHC and dark matter, arXiv:1207.5501 [INSPIRE].

  50. O. Buchmueller et al., The CMSSM and NUHM1 in light of 7 TeV LHC, B s μ + μ and XENON100 data, Eur. Phys. J. C 72 (2012) 2243 [arXiv:1207.7315] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. H. Chamseddine, R. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  52. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  53. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  54. P. Nath, R.L. Arnowitt and A.H. Chamseddine, Gauge hierarchy in supergravity guts, Nucl. Phys. B 227 (1983) 121 [INSPIRE].

    Article  ADS  Google Scholar 

  55. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542.

    Article  ADS  Google Scholar 

  56. T.J. LeCompte and S.P. Martin, Large Hadron Collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].

    ADS  Google Scholar 

  57. T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1/fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].

    ADS  Google Scholar 

  58. H.K. Dreiner, M. Krämer and J. Tattersall, How low can SUSY go? Matching, monojets and compressed spectra, Europhys. Lett. 99 (2012) 61001 [arXiv:1207.1613] [INSPIRE].

    Article  ADS  Google Scholar 

  59. B. Bhattacherjee and K. Ghosh, Degenerate SUSY search at the 8 TeV LHC, arXiv:1207.6289 [INSPIRE].

  60. H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013), no. 3 035006 [arXiv:1211.4981] [INSPIRE].

  61. http://lepsusy.web.cern.ch/lepsusy/

  62. CDF collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s} \) = 1.96 TeV using the trilepton signature of chargino-neutralino production, Phys. Rev. Lett. 101 (2008) 251801 [arXiv:0808.2446] [INSPIRE].

  63. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  64. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  65. ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions a \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 718 (2013) 879 [arXiv:1208.2884] [INSPIRE].

  66. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s} \) = 7 TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].

  67. CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].

  68. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-154 (2012).

  69. CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022 (2012).

  70. MSSM Working Group collaboration, A. Djouadi et al., The minimal supersymmetric standard model: Group summary report, hep-ph/9901246 [INSPIRE].

  71. Muon G-2 collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

  72. B.L. Roberts, Status of the Fermilab muon (g − 2) experiment, Chin. Phys. C 34 (2010) 741 [arXiv:1001.2898] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Datta, M. Guchait and N. Parua, Squark gluino mass limits revisited for nonuniversal scalar masses, Phys. Lett. B 395 (1997) 54 [hep-ph/9609413] [INSPIRE].

    Article  ADS  Google Scholar 

  74. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    Article  ADS  Google Scholar 

  76. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  77. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

  78. WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv:1212.5226 [INSPIRE].

  79. N. Baro, F. Boudjema and A. Semenov, Full one-loop corrections to the relic density in the MSSM: a few examples, Phys. Lett. B 660 (2008) 550 [arXiv:0710.1821] [INSPIRE].

    Article  ADS  Google Scholar 

  80. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  81. G. Bélanger, C. Boehm, M. Cirelli, J. Da Silva and A. Pukhov, PAMELA and FERMI-LAT limits on the neutralino-chargino mass degeneracy, JCAP 11 (2012) 028 [arXiv:1208.5009] [INSPIRE].

    Article  Google Scholar 

  82. CMS collaboration, Search for dark matter and large extra dimensions in monojet events in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 09 (2012) 094 [arXiv:1206.5663] [INSPIRE].

  83. ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, JHEP 04 (2013) 075 [arXiv:1210.4491] [INSPIRE].

  84. T. Han, Z. Liu and A. Natarajan, Dark matter and Higgs bosons in the MSSM, arXiv:1303.3040 [INSPIRE].

  85. D. Hooper, C. Kelso, P. Sandick and W. Xue, Closing supersymmetric resonance regions with direct detection experiments, Phys. Rev. D 88 (2013) 015010 [arXiv:1304.2417] [INSPIRE].

    ADS  Google Scholar 

  86. A. Datta, A. Datta and S. Raychaudhuri, Observing virtual LSPs at LEP-2, Phys. Lett. B 349 (1995) 113 [hep-ph/9411435] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Datta, A. Datta and S. Raychaudhuri, Virtual LSPs at e + e colliders, Eur. Phys. J. C 1 (1998) 375 [hep-ph/9605432] [INSPIRE].

    ADS  Google Scholar 

  88. C. Chen, M. Drees and J. Gunion, Searching for invisible and almost invisible particles at e + e colliders, Phys. Rev. Lett. 76 (1996) 2002 [hep-ph/9512230] [INSPIRE].

    Article  ADS  Google Scholar 

  89. H.K. Dreiner, O. Kittel and U. Langenfeld, Discovery potential of radiative neutralino production at the ILC, Phys. Rev. D 74 (2006) 115010 [hep-ph/0610020] [INSPIRE].

    ADS  Google Scholar 

  90. R. Basu, P. Pandita and C. Sharma, Radiative neutralino production in low energy supersymmetric models, Phys. Rev. D 77 (2008) 115009 [arXiv:0711.2121] [INSPIRE].

    ADS  Google Scholar 

  91. A. Datta and A. Datta, Are light sneutrinos buried in LEP data?, Phys. Lett. B 578 (2004) 165 [hep-ph/0210218] [INSPIRE].

    Article  ADS  Google Scholar 

  92. K. Huitu, L. Leinonen and J. Laamanen, Stop as a next-to-lightest supersymmetric particle in constrained MSSM, Phys. Rev. D 84 (2011) 075021 [arXiv:1107.2128] [INSPIRE].

    ADS  Google Scholar 

  93. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  94. X.-J. Bi, Q.-S. Yan and P.-F. Yin, Probing light stop pairs at the LHC, Phys. Rev. D 85 (2012) 035005 [arXiv:1111.2250] [INSPIRE].

    ADS  Google Scholar 

  95. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, JHEP 05 (2012) 057 [arXiv:1111.2830] [INSPIRE].

    Article  ADS  Google Scholar 

  96. Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, A heavy SM-like Higgs and a light stop from Yukawa-deflected gauge mediation, Phys. Rev. D 86 (2012) 095020 [arXiv:1203.2336] [INSPIRE].

    ADS  Google Scholar 

  97. Z. Han, A. Katz, D. Krohn and M. Reece, (Light) stop signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].

  98. J. Cao, C. Han, L. Wu, J.M. Yang and Y. Zhang, Probing natural SUSY from stop pair production at the LHC, JHEP 11 (2012) 039 [arXiv:1206.3865] [INSPIRE].

    Article  ADS  Google Scholar 

  99. A. Choudhury and A. Datta, New limits on top squark NLSP from LHC 4.7 fb −1 data, Mod. Phys. Lett. A 27 (2012) 1250188 [arXiv:1207.1846] [INSPIRE].

    Article  ADS  Google Scholar 

  100. C.-Y. Chen, A. Freitas, T. Han and K.S. Lee, New physics from the top at the LHC, JHEP 11 (2012) 124 [arXiv:1207.4794] [INSPIRE].

    ADS  Google Scholar 

  101. M. Carena, G. Nardini, M. Quirós and C.E. Wagner, MSSM electroweak baryogenesis and LHC data, JHEP 02 (2013) 001 [arXiv:1207.6330] [INSPIRE].

    Article  ADS  Google Scholar 

  102. M.A. Ajaib, I. Gogoladze and Q. Shafi, Higgs boson production and decay: effects from light third generation and vectorlike matter, Phys. Rev. D 86 (2012) 095028 [arXiv:1207.7068] [INSPIRE].

    ADS  Google Scholar 

  103. C. Wymant, Optimising stop naturalness, Phys. Rev. D 86 (2012) 115023 [arXiv:1208.1737] [INSPIRE].

    ADS  Google Scholar 

  104. Z.-H. Yu, X.-J. Bi, Q.-S. Yan and P.-F. Yin, Detecting light stop pairs in coannihilation scenarios at the LHC, Phys. Rev. D 87 (2013) 055007 [arXiv:1211.2997] [INSPIRE].

    ADS  Google Scholar 

  105. K. Krizka, A. Kumar and D.E. Morrissey, Very light scalar top quarks at the LHC, Phys. Rev. D 87 (2013) 095016 [arXiv:1212.4856] [INSPIRE].

    ADS  Google Scholar 

  106. B. Bhattacherjee, S.K. Mandal and M. Nojiri, Top polarization and stop mixing from boosted jet substructure, JHEP 03 (2013) 105 [arXiv:1211.7261] [INSPIRE].

    Article  ADS  Google Scholar 

  107. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stops, light staus and the 125 GeV Higgs, JHEP 08 (2013) 087 [arXiv:1303.4414] [INSPIRE].

    Article  ADS  Google Scholar 

  108. A. Chakraborty, D.K. Ghosh, D. Ghosh and D. Sengupta, Stop and sbottom search using dileptonic M T2 variable and boosted top technique at the LHC, arXiv:1303.5776 [INSPIRE].

  109. P. Agrawal and C. Frugiuele, Mixing stops at the LHC, arXiv:1304.3068 [INSPIRE].

  110. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  111. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  112. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  113. F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  114. M. Passera, W. Marciano and A. Sirlin, The muon g − 2 discrepancy: errors or new physics?, AIP Conf. Proc. 1078 (2009) 378 [arXiv:0809.4062] [INSPIRE].

    ADS  Google Scholar 

  115. U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g − 2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].

    ADS  Google Scholar 

  116. T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  117. S. Heinemeyer, D. Stöckinger and G. Weiglein, Two loop SUSY corrections to the anomalous magnetic moment of the muon, Nucl. Phys. B 690 (2004) 62 [hep-ph/0312264] [INSPIRE].

    Article  ADS  Google Scholar 

  118. G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g − 2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].

    Article  ADS  Google Scholar 

  119. M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs. LHC in supersymmetric models, arXiv:1303.4256 [INSPIRE].

  120. CDMS collaboration, R. Agnese et al., Dark matter search results using the silicon detectors of CDMS II, Phys. Rev. Lett. (2013) [arXiv:1304.4279] [INSPIRE].

  121. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

  122. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3.1 : a program for calculating dark matter observables, arXiv:1305.0237 [INSPIRE].

  123. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].

  124. O. Adriani et al., A statistical procedure for the identification of positrons in the PAMELA experiment, Astropart. Phys. 34 (2010) 1 [arXiv:1001.3522] [INSPIRE].

    Article  ADS  Google Scholar 

  125. Fermi LAT collaboration, M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope, Phys. Rev. Lett. 108 (2012) 011103 [arXiv:1109.0521] [INSPIRE].

  126. Fermi-LAT collaboration, M. Ackermann et al., Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope, Phys. Rev. Lett. 107 (2011) 241302 [arXiv:1108.3546] [INSPIRE].

  127. LAT collaboration, M. Ackermann et al., Constraints on the galactic halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].

  128. LAT collaboration, M. Ackermann et al., Fermi LAT search for dark matter in gamma-ray lines and the inclusive photon spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].

  129. O. Adriani et al., A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. 102 (2009) 051101 [arXiv:0810.4994] [INSPIRE].

    Article  ADS  Google Scholar 

  130. PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett. 105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].

  131. A.G. Delannoy et al., Probing dark matter at the LHC using vector boson fusion processes, Phys. Rev. Lett. 111 (2013) 061801 [arXiv:1304.7779] [INSPIRE].

    Article  ADS  Google Scholar 

  132. N. Bhattacharyya and A. Datta, Tracking down the elusive charginos/neutralinos through τ leptons at the Large Hadron Collider, Phys. Rev. D 80 (2009) 055016 [arXiv:0906.1460] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Choudhury.

Additional information

ArXiv ePrint: 1305.0928

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, A., Datta, A. Neutralino dark matter confronted by the LHC constraints on electroweak SUSY signals. J. High Energ. Phys. 2013, 119 (2013). https://doi.org/10.1007/JHEP09(2013)119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)119

Keywords

Navigation