Journal of High Energy Physics

, 2013:90 | Cite as

Modified Higgs physics from composite light flavors

  • Cédric Delaunay
  • Christophe GrojeanEmail author
  • Gilad Perez
Open Access


We point out that Higgs rates into gauge bosons can be significantly modified in composite pseudo Nambu-Goldstone boson (pNGB) Higgs models if quarks belonging to the first two generation are relatively composite objects as well. Although the lightness of the latter a priori screen them from the electroweak symmetry breaking sector, we show, in an effective two-site description, that their partners can lead to order one shifts in radiative Higgs couplings to gluons and photons. Moreover, due to the pseudo-Goldstone nature of the Higgs boson, the size of these corrections is completely controlled by the degree of compositeness of the individual light quarks. The current measurements of flavor-blind Higgs decay rates at the LHC thus provide an indirect probe of the flavor structure of the framework of pNGB Higgs compositeness.


Higgs Physics Beyond Standard Model Technicolor and Composite Models 


  1. [1]
    CMS collaboration, J. Incandela, Status of the CMS SM Higgs search, talk given at Latest update in the search for the Higgs boson, CERN, Geneva Switzerland, 4 Jul 2012.Google Scholar
  2. [2]
    ATLAS collaboration, F. Gianotti, Status of standard model Higgs searches in ATLAS, talk given at Latest update in the search for the Higgs boson, CERN, Geneva Switzerland, 4 Jul 2012.Google Scholar
  3. [3]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS and ATLAS collaborations, talks given at Rencontres de Moriond, La Thuile Italy, 2-9 Mar 2013, available at
  6. [6]
    CMS and ATLAS collaborations, talks given at Aspen 2013Higgs Quo Vadis, Aspen U.S.A., 10-15 March 2013, available at
  7. [7]
    D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].ADSGoogle Scholar
  20. [20]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Marzocca, M. Serone and J. Shu, General composite Higgs models, JHEP 08 (2012) 013 [arXiv:1205.0770] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Pomarol and F. Riva, The composite Higgs and light resonance connection, JHEP 08 (2012) 135 [arXiv:1205.6434] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    C. Csáki, G. Perez, Z. Surujon and A. Weiler, Flavor alignment via shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [INSPIRE].ADSGoogle Scholar
  30. [30]
    R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].ADSGoogle Scholar
  34. [34]
    V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 029 [arXiv:1210.1718] [INSPIRE].ADSGoogle Scholar
  43. [43]
    CMS collaboration, Search for contact interactions using the inclusive jet p T spectrum in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 052017 [arXiv:1301.5023] [INSPIRE].ADSGoogle Scholar
  44. [44]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L. Da Rold, C. Delaunay, C. Grojean and G. Perez, Up asymmetries from exhilarated composite flavor structures, JHEP 02 (2013) 149 [arXiv:1208.1499] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    CDF collaboration, T. Aaltonen et al., Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87 (2013) 092002 [arXiv:1211.1003] [INSPIRE].ADSGoogle Scholar
  47. [47]
    D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CDF collaboration, Leptonic asymmetry in tt production, CDF Note 10975 (2013).Google Scholar
  49. [49]
    D0 collaboration, V.M. Abazov et al., Measurement of leptonic asymmetries and top quark polarization in tt production, Phys. Rev. D 87 (2013) 011103 [arXiv:1207.0364] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary phenomenology from warped flavor triviality, Phys. Lett. B 703 (2011) 486 [arXiv:1101.2902] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
  52. [52]
    LHCb collaboration, Evidence for CP-violation in time-integrated D 0h h + decay rates, Phys. Rev. Lett. 108 (2012) 111602 [arXiv:1112.0938] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    CDF collaboration, T. Aaltonen et al., Measurement of the difference of CP-violating asymmetries in D 0K + K and D 0π + π decays at CDF, Phys. Rev. Lett. 109 (2012) 111801 [arXiv:1207.2158] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Belle collaboration, B.R. Ko, Direct CP-violation in charm at Belle, arXiv:1212.1975 [INSPIRE].
  55. [55]
    J. Brod, A.L. Kagan and J. Zupan, Size of direct CP-violation in singly Cabibbo-suppressed D decays, Phys. Rev. D 86 (2012) 014023 [arXiv:1111.5000] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Brod, Y. Grossman, A.L. Kagan and J. Zupan, A consistent picture for large penguins in Dπ + π , K + K , JHEP 10 (2012) 161 [arXiv:1203.6659] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Falkowski, M.L. Mangano, A. Martin, G. Perez and J. Winter, Data driving the top quark forward-backward asymmetry with a lepton-based handle, Phys. Rev. D 87 (2013) 034039 [arXiv:1212.4003] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Falkowski, Pseudo-Goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].ADSGoogle Scholar
  59. [59]
    I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev. D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].ADSGoogle Scholar
  61. [61]
    A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].ADSGoogle Scholar
  62. [62]
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs low-energy theorem (and its corrections) in composite models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].ADSGoogle Scholar
  67. [67]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs bosons from two gluon annihilation in proton proton collisions, Phys. Rev. Lett. 40 (1978) 692 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  70. [70]
    M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].
  71. [71]
    A.J. Buras, C. Grojean, S. Pokorski and R. Ziegler, FCNC effects in a minimal theory of fermion masses, JHEP 08 (2011) 028 [arXiv:1105.3725] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    A.J. Buras, J. Girrbach and R. Ziegler, Particle-antiparticle mixing, CP-violation and rare K and B decays in a minimal theory of fermion masses, JHEP 04 (2013) 168 [arXiv:1301.5498] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  73. [73]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].Google Scholar
  74. [74]
    C. Delaunay, J.F. Kamenik, G. Perez and L. Randall, Charming CP-violation and dipole operators from RS flavor anarchy, JHEP 01 (2013) 027 [arXiv:1207.0474] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    A. Azatov, M. Toharia and L. Zhu, Higgs mediated FCNCs in warped extra dimensions, Phys. Rev. D 80 (2009) 035016 [arXiv:0906.1990] [INSPIRE].ADSGoogle Scholar
  76. [76]
    A. Azatov, M. Toharia and L. Zhu, Higgs production from gluon fusion in warped extra dimensions, Phys. Rev. D 82 (2010) 056004 [arXiv:1006.5939] [INSPIRE].ADSGoogle Scholar
  77. [77]
    M. Frank, N. Pourtolami and M. Toharia, Higgs bosons in warped space, from the bulk to the brane, Phys. Rev. D 87 (2013) 096003 [arXiv:1301.7692] [INSPIRE].ADSGoogle Scholar
  78. [78]
    F. Goertz, U. Haisch and M. Neubert, Bounds on warped extra dimensions from a standard model-like Higgs boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, JHEP 08 (2012) 156 [arXiv:1204.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  81. [81]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    K. Agashe and R. Contino, The minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    D. Pappadopulo, A. Thamm and R. Torre, A minimally tuned composite Higgs model from an extra dimension, JHEP 07 (2013) 058 [arXiv:1303.3062] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    G. Isidori, Y. Nir and G. Perez, Flavor physics constraints for physics beyond the standard model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].ADSGoogle Scholar
  91. [91]
    Y. Grossman, R. Harnik, G. Perez, M.D. Schwartz and Z. Surujon, Twisted split fermions, Phys. Rev. D 71 (2005) 056007 [hep-ph/0407260] [INSPIRE].ADSGoogle Scholar
  92. [92]
    A.E. Nelson and M.J. Strassler, Suppressing flavor anarchy, JHEP 09 (2000) 030 [hep-ph/0006251] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    A.E. Nelson and M.J. Strassler, Exact results for supersymmetric renormalization and the supersymmetric flavor problem, JHEP 07 (2002) 021 [hep-ph/0104051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].ADSGoogle Scholar
  97. [97]
    O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect kaon CP-violation to constrain the warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    H. Davoudiasl, G. Perez and A. Soni, The little Randall-Sundrum model at the Large Hadron Collider, Phys. Lett. B 665 (2008) 67 [arXiv:0802.0203] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    K. Agashe, M. Papucci, G. Perez and D. Pirjol, Next to minimal flavor violation, hep-ph/0509117 [INSPIRE].
  100. [100]
    A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General minimal flavor violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].ADSGoogle Scholar
  101. [101]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  102. [102]
    M. Redi, Composite MFV and beyond, Eur. Phys. J. C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].ADSGoogle Scholar
  104. [104]
    A. Azatov and J. Galloway, Electroweak symmetry breaking and the Higgs boson: confronting theories at colliders, Int. J. Mod. Phys. A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, CERN-2011-002 (2011) [arXiv:1101.0593] [INSPIRE].

Copyright information

© SISSA 2013

Authors and Affiliations

  • Cédric Delaunay
    • 1
  • Christophe Grojean
    • 1
    • 2
    Email author
  • Gilad Perez
    • 1
    • 3
  1. 1.CERN Physics Department, Theory DivisionGeneva 23Switzerland
  2. 2.IFAEUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Department of Particle Physics and AstrophysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations