Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Probing phase structure of black holes with Lyapunov exponents
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Holographic Kolmogorov-Sinai entropy and the quantum Lyapunov spectrum

27 January 2022

Georg Maier, Andreas Schäfer & Sebastian Waeber

Hawking decay and thermodynamic transformation of a black hole: two examples

28 January 2022

Aloke Kumar Sinha

Entropy production and entropic attractors in black hole fusion and fission

20 August 2020

Tomás Andrade, Roberto Emparan, … Ryotaku Suzuki

Quantum Black Holes as Solvents

24 April 2021

Erik Aurell, Michał Eckstein & Paweł Horodecki

Observing dynamic oscillatory behavior of triple points among black hole thermodynamic phase transitions

01 June 2021

Shao-Wen Wei, Yong-Qiang Wang, … Robert B. Mann

Quasinormal Modes of Black Holes

29 October 2020

Gurbir S. Arora & P. Ramadevi

The volume of the black hole interior at late times

12 July 2022

Luca V. Iliesiu, Márk Mezei & Gábor Sárosi

Chaos at the rim of black hole and fuzzball shadows

18 May 2020

M. Bianchi, A. Grillo & J.F. Morales

$$P-V$$ P - V criticality and phase transition of the Kerr-Sen-AdS Black Hole

03 March 2021

M. Sharif & Qanitah Ama-Tul-Mughani

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 17 August 2022

Probing phase structure of black holes with Lyapunov exponents

  • Xiaobo Guo2,
  • Yuhang Lu3,
  • Benrong Mu  ORCID: orcid.org/0000-0002-1089-53921 &
  • …
  • Peng Wang3 

Journal of High Energy Physics volume 2022, Article number: 153 (2022) Cite this article

  • 295 Accesses

  • 1 Citations

  • 3 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We conjecture that there exists a relationship between Lyapunov exponents and black hole phase transitions. To support our conjecture, Lyapunov exponents of the motion of particles and ring strings are calculated for Reissner-Nordström-AdS black holes. When a phase transition occurs, the Lyapunov exponents become multivalued, and branches of the Lyapunov exponents coincide with black hole phases. Moreover, the discontinuous change in the Lyapunov exponents can be treated as an order parameter, and has a critical exponent of 1/2 near the critical point. Our findings reveal that Lyapunov exponents can be an efficient tool to study phase structure of black holes.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. S. W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [INSPIRE].

    Article  ADS  Google Scholar 

  2. J. D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

  4. S. W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. S. W. Hawking, Particle creation by black holes, in 1st Oxford Conference on Quantum Gravity, Febraury 15-16, Chilton, U.K. (1974).

  6. S. W. Hawking and D. N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  8. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Cvetič and S. S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. M. M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Cvetič, S. Nojiri and S. D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. Nojiri and S. D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. 542 (2002) 301] [hep-th/0109122] [INSPIRE].

  18. D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. B. P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D. Kubiznak and R. B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S.-W. Wei and Y.-X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D 87 (2013) 044014 [arXiv:1209.1707] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Gunasekaran, R. B. Mann and D. Kubiznak, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP 11 (2012) 110 [arXiv:1208.6251] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R.-G. Cai, L.-M. Cao, L. Li and R.-Q. Yang, P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space, JHEP 09 (2013) 005 [arXiv:1306.6233] [INSPIRE].

    Article  ADS  Google Scholar 

  24. N. Altamirano, D. Kubiznak and R. B. Mann, Reentrant phase transitions in rotating Anti-de Sitter black holes, Phys. Rev. D 88 (2013) 101502 [arXiv:1306.5756] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Altamirano, D. Kubizňák, R. B. Mann and Z. Sherkatghanad, Kerr-AdS analogue of triple point and solid/liquid/gas phase transition, Class. Quant. Grav. 31 (2014) 042001 [arXiv:1308.2672] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. W. Xu and L. Zhao, Critical phenomena of static charged AdS black holes in conformal gravity, Phys. Lett. B 736 (2014) 214 [arXiv:1405.7665] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. A. M. Frassino, D. Kubiznak, R. B. Mann and F. Simovic, Multiple reentrant phase transitions and triple points in Lovelock thermodynamics, JHEP 09 (2014) 080 [arXiv:1406.7015] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. H. Dehghani, S. Kamrani and A. Sheykhi, P-V criticality of charged dilatonic black holes, Phys. Rev. D 90 (2014) 104020 [arXiv:1505.02386] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S.-W. Wei and Y.-X. Liu, Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D 90 (2014) 044057 [arXiv:1402.2837] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. P. Dolan, A. Kostouki, D. Kubiznak and R. B. Mann, Isolated critical point from Lovelock gravity, Class. Quant. Grav. 31 (2014) 242001 [arXiv:1407.4783] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. R. A. Hennigar, W. G. Brenna and R. B. Mann, P-V criticality in quasitopological gravity, JHEP 07 (2015) 077 [arXiv:1505.05517] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. E. Caceres, P. H. Nguyen and J. F. Pedraza, Holographic entanglement entropy and the extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. S.-W. Wei, P. Cheng and Y.-X. Liu, Analytical and exact critical phenomena of d-dimensional singly spinning Kerr-AdS black holes, Phys. Rev. D 93 (2016) 084015 [arXiv:1510.00085] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Chakraborty and T. Padmanabhan, Thermodynamical interpretation of the geometrical variables associated with null surfaces, Phys. Rev. D 92 (2015) 104011 [arXiv:1508.04060] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. S. H. Hendi, G.-Q. Li, J.-X. Mo, S. Panahiyan and B. Eslam Panah, New perspective for black hole thermodynamics in Gauss-Bonnet-Born-Infeld massive gravity, Eur. Phys. J. C 76 (2016) 571 [arXiv:1608.03148] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. A. Hennigar, R. B. Mann and E. Tjoa, Superfluid black holes, Phys. Rev. Lett. 118 (2017) 021301 [arXiv:1609.02564] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D. Momeni, M. Faizal, K. Myrzakulov and R. Myrzakulov, Fidelity susceptibility as holographic PV-criticality, Phys. Lett. B 765 (2017) 154 [arXiv:1604.06909] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. H. Hendi, R. B. Mann, S. Panahiyan and B. Eslam Panah, Van der Waals like behavior of topological AdS black holes in massive gravity, Phys. Rev. D 95 (2017) 021501 [arXiv:1702.00432] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. J. P. S. Lemos and O. B. Zaslavskii, Black hole thermodynamics with the cosmological constant as independent variable: bridge between the enthalpy and the Euclidean path integral approaches, Phys. Lett. B 786 (2018) 296 [arXiv:1806.07910] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. J. F. Pedraza, W. Sybesma and M. R. Visser, Hyperscaling violating black holes with spherical and hyperbolic horizons, Class. Quant. Grav. 36 (2019) 054002 [arXiv:1807.09770] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. P. Wang, H. Wu and H. Yang, Thermodynamics and phase transitions of nonlinear electrodynamics black holes in an extended phase space, JCAP 04 (2019) 052 [arXiv:1808.04506] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. S.-W. Wei and Y.-X. Liu, Extended thermodynamics and microstructures of four-dimensional charged Gauss-Bonnet black hole in AdS space, Phys. Rev. D 101 (2020) 104018 [arXiv:2003.14275] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. G. Ruppeiner, Thermodynamic curvature: pure fluids to black holes, J. Phys. Conf. Ser. 410 (2013) 012138 [arXiv:1210.2011] [INSPIRE].

    Article  Google Scholar 

  44. Y.-G. Miao and Z.-M. Xu, Microscopic structures and thermal stability of black holes conformally coupled to scalar fields in five dimensions, Nucl. Phys. B 942 (2019) 205 [arXiv:1711.01757] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. X.-Y. Guo, H.-F. Li, L.-C. Zhang and R. Zhao, Microstructure and continuous phase transition of a Reissner-Nordstrom-AdS black hole, Phys. Rev. D 100 (2019) 064036 [arXiv:1901.04703] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. S.-W. Wei, Y.-X. Liu and R. B. Mann, Ruppeiner geometry, phase transitions, and the microstructure of charged AdS black holes, Phys. Rev. D 100 (2019) 124033 [arXiv:1909.03887] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. P. Wang, H. Wu and H. Yang, Thermodynamic geometry of AdS black holes and black holes in a cavity, Eur. Phys. J. C 80 (2020) 216 [arXiv:1910.07874] [INSPIRE].

    Article  ADS  Google Scholar 

  48. P. K. Yerra and C. Bhamidipati, Ruppeiner geometry, phase transitions and microstructures of black holes in massive gravity, Int. J. Mod. Phys. A 35 (2020) 2050120 [arXiv:2006.07775] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. P. K. Yerra and C. Bhamidipati, Novel relations in massive gravity at Hawking-Page transition, Phys. Rev. D 104 (2021) 104049 [arXiv:2107.04504] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. S.-W. Wei and Y.-X. Liu, Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition, Phys. Rev. Lett. 115 (2015) 111302 [Erratum ibid. 116 (2016) 169903] [arXiv:1502.00386] [INSPIRE].

  51. S.-W. Wei, Y.-X. Liu and R. B. Mann, Repulsive interactions and universal properties of charged Anti-de Sitter black hole microstructures, Phys. Rev. Lett. 123 (2019) 071103 [arXiv:1906.10840] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. Y. Liu, D.-C. Zou and B. Wang, Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes, JHEP 09 (2014) 179 [arXiv:1405.2644] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. S. Mahapatra, Thermodynamics, phase transition and quasinormal modes with Weyl corrections, JHEP 04 (2016) 142 [arXiv:1602.03007] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  54. M. Chabab, H. El Moumni, S. Iraoui and K. Masmar, Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition, Eur. Phys. J. C 76 (2016) 676 [arXiv:1606.08524] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D.-C. Zou, Y. Liu and R.-H. Yue, Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity, Eur. Phys. J. C 77 (2017) 365 [arXiv:1702.08118] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Zhang, C.-M. Zhang, D.-C. Zou and R.-H. Yue, Phase transition and quasinormal modes for charged black holes in 4D Einstein-Gauss-Bonnet gravity, Chin. Phys. C 45 (2021) 045105 [arXiv:2009.03096] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S.-W. Wei and Y.-X. Liu, Photon orbits and thermodynamic phase transition of d-dimensional charged AdS black holes, Phys. Rev. D 97 (2018) 104027 [arXiv:1711.01522] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. S.-W. Wei, Y.-X. Liu and Y.-Q. Wang, Probing the relationship between the null geodesics and thermodynamic phase transition for rotating Kerr-AdS black holes, Phys. Rev. D 99 (2019) 044013 [arXiv:1807.03455] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Zhang, S.-Z. Han, J. Jiang and W.-B. Liu, Circular orbit of a test particle and phase transition of a black hole, Phys. Rev. D 99 (2019) 065016 [arXiv:1903.08293] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  60. M. Zhang and M. Guo, Can shadows reflect phase structures of black holes?, Eur. Phys. J. C 80 (2020) 790 [arXiv:1909.07033] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Belhaj, L. Chakhchi, H. El Moumni, J. Khalloufi and K. Masmar, Thermal image and phase transitions of charged AdS black holes using shadow analysis, Int. J. Mod. Phys. A 35 (2020) 2050170 [arXiv:2005.05893] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control 55 (1992) 531.

  63. Y. Sota, S. Suzuki and K.-i. Maeda, Chaos in static axisymmetric space-times. 1: Vacuum case, Class. Quant. Grav. 13 (1996) 1241 [gr-qc/9505036] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. Y. Sota, S. Suzuki and K.-i. Maeda, Chaos in static axisymmetric space-times. 2. Nonvacuum case, gr-qc/9610065 [INSPIRE].

  65. N. Kan and B. Gwak, Bound on the Lyapunov exponent in Kerr-Newman black holes via a charged particle, Phys. Rev. D 105 (2022) 026006 [arXiv:2109.07341] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. B. Gwak, N. Kan, B.-H. Lee and H. Lee, Violation of bound on chaos for charged probe in Kerr-Newman-AdS black hole, arXiv:2203.07298 [INSPIRE].

  67. W. Hanan and E. Radu, Chaotic motion in multi-black hole spacetimes and holographic screens, Mod. Phys. Lett. A 22 (2007) 399 [gr-qc/0610119] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. J. R. Gair, C. Li and I. Mandel, Observable properties of orbits in exact bumpy spacetimes, Phys. Rev. D 77 (2008) 024035 [arXiv:0708.0628] [INSPIRE].

    Article  ADS  Google Scholar 

  69. A. M. A. Zahrani, V. P. Frolov and A. A. Shoom, Critical escape velocity for a charged particle moving around a weakly magnetized Schwarzschild black hole, Phys. Rev. D 87 (2013) 084043 [arXiv:1301.4633] [INSPIRE].

    Article  ADS  Google Scholar 

  70. L. Polcar and O. Semerák, Free motion around black holes with discs or rings: Between integrability and chaos. VI. The Melnikov method, Phys. Rev. D 100 (2019) 103013 [arXiv:1911.09790] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. M. Wang, S. Chen and J. Jing, Chaos in the motion of a test scalar particle coupling to the Einstein tensor in Schwarzschild-Melvin black hole spacetime, Eur. Phys. J. C 77 (2017) 208 [arXiv:1605.09506] [INSPIRE].

    Article  ADS  Google Scholar 

  72. S. Chen, M. Wang and J. Jing, Chaotic motion of particles in the accelerating and rotating black holes spacetime, JHEP 09 (2016) 082 [arXiv:1604.02785] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. M. Wang, S. Chen and J. Jing, Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment, Phys. Rev. D 98 (2018) 104040 [arXiv:1801.02118] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. F. Lu, J. Tao and P. Wang, Minimal length effects on chaotic motion of particles around black hole horizon, JCAP 12 (2018) 036 [arXiv:1811.02140] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. X. Guo, K. Liang, B. Mu, P. Wang and M. Yang, Chaotic motion around a black hole under minimal length effects, Eur. Phys. J. C 80 (2020) 745 [arXiv:2002.05894] [INSPIRE].

    Article  ADS  Google Scholar 

  76. K. Hashimoto and N. Tanahashi, Universality in chaos of particle motion near black hole horizon, Phys. Rev. D 95 (2017) 024007 [arXiv:1610.06070] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. S. Dalui, B. R. Majhi and P. Mishra, Presence of horizon makes particle motion chaotic, Phys. Lett. B 788 (2019) 486 [arXiv:1803.06527] [INSPIRE].

    Article  ADS  Google Scholar 

  78. J. Maldacena, S. H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. Q.-Q. Zhao, Y.-Z. Li and H. Lü, Static equilibria of charged particles around charged black holes: chaos bound and its violations, Phys. Rev. D 98 (2018) 124001 [arXiv:1809.04616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. X. Guo, K. Liang, B. Mu, P. Wang and M. Yang, Minimal length effects on motion of a particle in Rindler space, Chin. Phys. C 45 (2021) 023115 [arXiv:2007.07744] [INSPIRE].

    Article  ADS  Google Scholar 

  81. L. A. Pando Zayas and C. A. Terrero-Escalante, Chaos in the gauge/gravity correspondence, JHEP 09 (2010) 094 [arXiv:1007.0277] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. D.-Z. Ma, J.-P. Wu and J. Zhang, Chaos from the ring string in a Gauss-Bonnet black hole in AdS5 space, Phys. Rev. D 89 (2014) 086011 [arXiv:1405.3563] [INSPIRE].

    Article  ADS  Google Scholar 

  83. P. Basu, P. Chaturvedi and P. Samantray, Chaotic dynamics of strings in charged black hole backgrounds, Phys. Rev. D 95 (2017) 066014 [arXiv:1607.04466] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  84. K. Hashimoto, K. Murata and N. Tanahashi, Chaos of Wilson loop from string motion near black hole horizon, Phys. Rev. D 98 (2018) 086007 [arXiv:1803.06756] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  85. M. Čubrović, The bound on chaos for closed strings in Anti-de Sitter black hole backgrounds, JHEP 12 (2019) 150 [arXiv:1904.06295] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. D.-Z. Ma, D. Zhang, G. Fu and J.-P. Wu, Chaotic dynamics of string around charged black brane with hyperscaling violation, JHEP 01 (2020) 103 [arXiv:1911.09913] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. D.-Z. Ma, F. Xia, D. Zhang, G.-Y. Fu and J.-P. Wu, Chaotic dynamics of string around the conformal black hole, Eur. Phys. J. C 82 (2022) 372 [arXiv:2205.00226] [INSPIRE].

    Article  ADS  Google Scholar 

  88. V. Cardoso, A. S. Miranda, E. Berti, H. Witek and V. T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev. D 79 (2009) 064016 [arXiv:0812.1806] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. G. Guo, P. Wang, H. Wu and H. Yang, Quasinormal modes of black holes with multiple photon spheres, JHEP 06 (2022) 060 [arXiv:2112.14133] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  90. Y.-Q. Lei and X.-H. Ge, Circular motion of charged particles near a charged black hole, Phys. Rev. D 105 (2022) 084011 [arXiv:2111.06089] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  91. A. V. Frolov and A. L. Larsen, Chaotic scattering and capture of strings by black hole, Class. Quant. Grav. 16 (1999) 3717 [gr-qc/9908039] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. G. Benettin, L. Galgani and J. M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A 14 (1976) 2338.

  93. J. H. Verner, High-order explicit runge-kutta pairs with low stage order, Appl. Num. Math. 22 (1996) 345.

Download references

Author information

Authors and Affiliations

  1. Physics Teaching and Research Section, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China

    Benrong Mu

  2. Mechanical and Electrical Engineering School, Chizhou University, Chizhou, Anhui, 247000, P.R. China

    Xiaobo Guo

  3. Center for Theoretical Physics, College of Physics, Sichuan University, Chengdu, 610064, P.R. China

    Yuhang Lu & Peng Wang

Authors
  1. Xiaobo Guo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yuhang Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Benrong Mu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Peng Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Benrong Mu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2205.02122

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Lu, Y., Mu, B. et al. Probing phase structure of black holes with Lyapunov exponents. J. High Energ. Phys. 2022, 153 (2022). https://doi.org/10.1007/JHEP08(2022)153

Download citation

  • Received: 28 May 2022

  • Accepted: 21 July 2022

  • Published: 17 August 2022

  • DOI: https://doi.org/10.1007/JHEP08(2022)153

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Spacetime Singularities
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.