Abstract
We conjecture that there exists a relationship between Lyapunov exponents and black hole phase transitions. To support our conjecture, Lyapunov exponents of the motion of particles and ring strings are calculated for Reissner-Nordström-AdS black holes. When a phase transition occurs, the Lyapunov exponents become multivalued, and branches of the Lyapunov exponents coincide with black hole phases. Moreover, the discontinuous change in the Lyapunov exponents can be treated as an order parameter, and has a critical exponent of 1/2 near the critical point. Our findings reveal that Lyapunov exponents can be an efficient tool to study phase structure of black holes.
References
S. W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [INSPIRE].
J. D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].
J. D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].
S. W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].
S. W. Hawking, Particle creation by black holes, in 1st Oxford Conference on Quantum Gravity, Febraury 15-16, Chilton, U.K. (1974).
S. W. Hawking and D. N. Page, Thermodynamics of black holes in Anti-de Sitter space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].
J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].
M. Cvetič and S. S. Gubser, Phases of R charged black holes, spinning branes and strongly coupled gauge theories, JHEP 04 (1999) 024 [hep-th/9902195] [INSPIRE].
A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].
A. Chamblin, R. Emparan, C. V. Johnson and R. C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes, Phys. Rev. D 60 (1999) 104026 [hep-th/9904197] [INSPIRE].
M. M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].
R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].
M. Cvetič, S. Nojiri and S. D. Odintsov, Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity, Nucl. Phys. B 628 (2002) 295 [hep-th/0112045] [INSPIRE].
S. Nojiri and S. D. Odintsov, Anti-de Sitter black hole thermodynamics in higher derivative gravity and new confining deconfining phases in dual CFT, Phys. Lett. B 521 (2001) 87 [Erratum ibid. 542 (2002) 301] [hep-th/0109122] [INSPIRE].
D. Kastor, S. Ray and J. Traschen, Enthalpy and the mechanics of AdS black holes, Class. Quant. Grav. 26 (2009) 195011 [arXiv:0904.2765] [INSPIRE].
B. P. Dolan, Pressure and volume in the first law of black hole thermodynamics, Class. Quant. Grav. 28 (2011) 235017 [arXiv:1106.6260] [INSPIRE].
D. Kubiznak and R. B. Mann, P-V criticality of charged AdS black holes, JHEP 07 (2012) 033 [arXiv:1205.0559] [INSPIRE].
S.-W. Wei and Y.-X. Liu, Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes, Phys. Rev. D 87 (2013) 044014 [arXiv:1209.1707] [INSPIRE].
S. Gunasekaran, R. B. Mann and D. Kubiznak, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, JHEP 11 (2012) 110 [arXiv:1208.6251] [INSPIRE].
R.-G. Cai, L.-M. Cao, L. Li and R.-Q. Yang, P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space, JHEP 09 (2013) 005 [arXiv:1306.6233] [INSPIRE].
N. Altamirano, D. Kubiznak and R. B. Mann, Reentrant phase transitions in rotating Anti-de Sitter black holes, Phys. Rev. D 88 (2013) 101502 [arXiv:1306.5756] [INSPIRE].
N. Altamirano, D. Kubizňák, R. B. Mann and Z. Sherkatghanad, Kerr-AdS analogue of triple point and solid/liquid/gas phase transition, Class. Quant. Grav. 31 (2014) 042001 [arXiv:1308.2672] [INSPIRE].
W. Xu and L. Zhao, Critical phenomena of static charged AdS black holes in conformal gravity, Phys. Lett. B 736 (2014) 214 [arXiv:1405.7665] [INSPIRE].
A. M. Frassino, D. Kubiznak, R. B. Mann and F. Simovic, Multiple reentrant phase transitions and triple points in Lovelock thermodynamics, JHEP 09 (2014) 080 [arXiv:1406.7015] [INSPIRE].
M. H. Dehghani, S. Kamrani and A. Sheykhi, P-V criticality of charged dilatonic black holes, Phys. Rev. D 90 (2014) 104020 [arXiv:1505.02386] [INSPIRE].
S.-W. Wei and Y.-X. Liu, Triple points and phase diagrams in the extended phase space of charged Gauss-Bonnet black holes in AdS space, Phys. Rev. D 90 (2014) 044057 [arXiv:1402.2837] [INSPIRE].
B. P. Dolan, A. Kostouki, D. Kubiznak and R. B. Mann, Isolated critical point from Lovelock gravity, Class. Quant. Grav. 31 (2014) 242001 [arXiv:1407.4783] [INSPIRE].
R. A. Hennigar, W. G. Brenna and R. B. Mann, P-V criticality in quasitopological gravity, JHEP 07 (2015) 077 [arXiv:1505.05517] [INSPIRE].
E. Caceres, P. H. Nguyen and J. F. Pedraza, Holographic entanglement entropy and the extended phase structure of STU black holes, JHEP 09 (2015) 184 [arXiv:1507.06069] [INSPIRE].
S.-W. Wei, P. Cheng and Y.-X. Liu, Analytical and exact critical phenomena of d-dimensional singly spinning Kerr-AdS black holes, Phys. Rev. D 93 (2016) 084015 [arXiv:1510.00085] [INSPIRE].
S. Chakraborty and T. Padmanabhan, Thermodynamical interpretation of the geometrical variables associated with null surfaces, Phys. Rev. D 92 (2015) 104011 [arXiv:1508.04060] [INSPIRE].
S. H. Hendi, G.-Q. Li, J.-X. Mo, S. Panahiyan and B. Eslam Panah, New perspective for black hole thermodynamics in Gauss-Bonnet-Born-Infeld massive gravity, Eur. Phys. J. C 76 (2016) 571 [arXiv:1608.03148] [INSPIRE].
R. A. Hennigar, R. B. Mann and E. Tjoa, Superfluid black holes, Phys. Rev. Lett. 118 (2017) 021301 [arXiv:1609.02564] [INSPIRE].
D. Momeni, M. Faizal, K. Myrzakulov and R. Myrzakulov, Fidelity susceptibility as holographic PV-criticality, Phys. Lett. B 765 (2017) 154 [arXiv:1604.06909] [INSPIRE].
S. H. Hendi, R. B. Mann, S. Panahiyan and B. Eslam Panah, Van der Waals like behavior of topological AdS black holes in massive gravity, Phys. Rev. D 95 (2017) 021501 [arXiv:1702.00432] [INSPIRE].
J. P. S. Lemos and O. B. Zaslavskii, Black hole thermodynamics with the cosmological constant as independent variable: bridge between the enthalpy and the Euclidean path integral approaches, Phys. Lett. B 786 (2018) 296 [arXiv:1806.07910] [INSPIRE].
J. F. Pedraza, W. Sybesma and M. R. Visser, Hyperscaling violating black holes with spherical and hyperbolic horizons, Class. Quant. Grav. 36 (2019) 054002 [arXiv:1807.09770] [INSPIRE].
P. Wang, H. Wu and H. Yang, Thermodynamics and phase transitions of nonlinear electrodynamics black holes in an extended phase space, JCAP 04 (2019) 052 [arXiv:1808.04506] [INSPIRE].
S.-W. Wei and Y.-X. Liu, Extended thermodynamics and microstructures of four-dimensional charged Gauss-Bonnet black hole in AdS space, Phys. Rev. D 101 (2020) 104018 [arXiv:2003.14275] [INSPIRE].
G. Ruppeiner, Thermodynamic curvature: pure fluids to black holes, J. Phys. Conf. Ser. 410 (2013) 012138 [arXiv:1210.2011] [INSPIRE].
Y.-G. Miao and Z.-M. Xu, Microscopic structures and thermal stability of black holes conformally coupled to scalar fields in five dimensions, Nucl. Phys. B 942 (2019) 205 [arXiv:1711.01757] [INSPIRE].
X.-Y. Guo, H.-F. Li, L.-C. Zhang and R. Zhao, Microstructure and continuous phase transition of a Reissner-Nordstrom-AdS black hole, Phys. Rev. D 100 (2019) 064036 [arXiv:1901.04703] [INSPIRE].
S.-W. Wei, Y.-X. Liu and R. B. Mann, Ruppeiner geometry, phase transitions, and the microstructure of charged AdS black holes, Phys. Rev. D 100 (2019) 124033 [arXiv:1909.03887] [INSPIRE].
P. Wang, H. Wu and H. Yang, Thermodynamic geometry of AdS black holes and black holes in a cavity, Eur. Phys. J. C 80 (2020) 216 [arXiv:1910.07874] [INSPIRE].
P. K. Yerra and C. Bhamidipati, Ruppeiner geometry, phase transitions and microstructures of black holes in massive gravity, Int. J. Mod. Phys. A 35 (2020) 2050120 [arXiv:2006.07775] [INSPIRE].
P. K. Yerra and C. Bhamidipati, Novel relations in massive gravity at Hawking-Page transition, Phys. Rev. D 104 (2021) 104049 [arXiv:2107.04504] [INSPIRE].
S.-W. Wei and Y.-X. Liu, Insight into the Microscopic Structure of an AdS Black Hole from a Thermodynamical Phase Transition, Phys. Rev. Lett. 115 (2015) 111302 [Erratum ibid. 116 (2016) 169903] [arXiv:1502.00386] [INSPIRE].
S.-W. Wei, Y.-X. Liu and R. B. Mann, Repulsive interactions and universal properties of charged Anti-de Sitter black hole microstructures, Phys. Rev. Lett. 123 (2019) 071103 [arXiv:1906.10840] [INSPIRE].
Y. Liu, D.-C. Zou and B. Wang, Signature of the Van der Waals like small-large charged AdS black hole phase transition in quasinormal modes, JHEP 09 (2014) 179 [arXiv:1405.2644] [INSPIRE].
S. Mahapatra, Thermodynamics, phase transition and quasinormal modes with Weyl corrections, JHEP 04 (2016) 142 [arXiv:1602.03007] [INSPIRE].
M. Chabab, H. El Moumni, S. Iraoui and K. Masmar, Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition, Eur. Phys. J. C 76 (2016) 676 [arXiv:1606.08524] [INSPIRE].
D.-C. Zou, Y. Liu and R.-H. Yue, Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity, Eur. Phys. J. C 77 (2017) 365 [arXiv:1702.08118] [INSPIRE].
M. Zhang, C.-M. Zhang, D.-C. Zou and R.-H. Yue, Phase transition and quasinormal modes for charged black holes in 4D Einstein-Gauss-Bonnet gravity, Chin. Phys. C 45 (2021) 045105 [arXiv:2009.03096] [INSPIRE].
S.-W. Wei and Y.-X. Liu, Photon orbits and thermodynamic phase transition of d-dimensional charged AdS black holes, Phys. Rev. D 97 (2018) 104027 [arXiv:1711.01522] [INSPIRE].
S.-W. Wei, Y.-X. Liu and Y.-Q. Wang, Probing the relationship between the null geodesics and thermodynamic phase transition for rotating Kerr-AdS black holes, Phys. Rev. D 99 (2019) 044013 [arXiv:1807.03455] [INSPIRE].
M. Zhang, S.-Z. Han, J. Jiang and W.-B. Liu, Circular orbit of a test particle and phase transition of a black hole, Phys. Rev. D 99 (2019) 065016 [arXiv:1903.08293] [INSPIRE].
M. Zhang and M. Guo, Can shadows reflect phase structures of black holes?, Eur. Phys. J. C 80 (2020) 790 [arXiv:1909.07033] [INSPIRE].
A. Belhaj, L. Chakhchi, H. El Moumni, J. Khalloufi and K. Masmar, Thermal image and phase transitions of charged AdS black holes using shadow analysis, Int. J. Mod. Phys. A 35 (2020) 2050170 [arXiv:2005.05893] [INSPIRE].
A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control 55 (1992) 531.
Y. Sota, S. Suzuki and K.-i. Maeda, Chaos in static axisymmetric space-times. 1: Vacuum case, Class. Quant. Grav. 13 (1996) 1241 [gr-qc/9505036] [INSPIRE].
Y. Sota, S. Suzuki and K.-i. Maeda, Chaos in static axisymmetric space-times. 2. Nonvacuum case, gr-qc/9610065 [INSPIRE].
N. Kan and B. Gwak, Bound on the Lyapunov exponent in Kerr-Newman black holes via a charged particle, Phys. Rev. D 105 (2022) 026006 [arXiv:2109.07341] [INSPIRE].
B. Gwak, N. Kan, B.-H. Lee and H. Lee, Violation of bound on chaos for charged probe in Kerr-Newman-AdS black hole, arXiv:2203.07298 [INSPIRE].
W. Hanan and E. Radu, Chaotic motion in multi-black hole spacetimes and holographic screens, Mod. Phys. Lett. A 22 (2007) 399 [gr-qc/0610119] [INSPIRE].
J. R. Gair, C. Li and I. Mandel, Observable properties of orbits in exact bumpy spacetimes, Phys. Rev. D 77 (2008) 024035 [arXiv:0708.0628] [INSPIRE].
A. M. A. Zahrani, V. P. Frolov and A. A. Shoom, Critical escape velocity for a charged particle moving around a weakly magnetized Schwarzschild black hole, Phys. Rev. D 87 (2013) 084043 [arXiv:1301.4633] [INSPIRE].
L. Polcar and O. Semerák, Free motion around black holes with discs or rings: Between integrability and chaos. VI. The Melnikov method, Phys. Rev. D 100 (2019) 103013 [arXiv:1911.09790] [INSPIRE].
M. Wang, S. Chen and J. Jing, Chaos in the motion of a test scalar particle coupling to the Einstein tensor in Schwarzschild-Melvin black hole spacetime, Eur. Phys. J. C 77 (2017) 208 [arXiv:1605.09506] [INSPIRE].
S. Chen, M. Wang and J. Jing, Chaotic motion of particles in the accelerating and rotating black holes spacetime, JHEP 09 (2016) 082 [arXiv:1604.02785] [INSPIRE].
M. Wang, S. Chen and J. Jing, Chaotic shadow of a non-Kerr rotating compact object with quadrupole mass moment, Phys. Rev. D 98 (2018) 104040 [arXiv:1801.02118] [INSPIRE].
F. Lu, J. Tao and P. Wang, Minimal length effects on chaotic motion of particles around black hole horizon, JCAP 12 (2018) 036 [arXiv:1811.02140] [INSPIRE].
X. Guo, K. Liang, B. Mu, P. Wang and M. Yang, Chaotic motion around a black hole under minimal length effects, Eur. Phys. J. C 80 (2020) 745 [arXiv:2002.05894] [INSPIRE].
K. Hashimoto and N. Tanahashi, Universality in chaos of particle motion near black hole horizon, Phys. Rev. D 95 (2017) 024007 [arXiv:1610.06070] [INSPIRE].
S. Dalui, B. R. Majhi and P. Mishra, Presence of horizon makes particle motion chaotic, Phys. Lett. B 788 (2019) 486 [arXiv:1803.06527] [INSPIRE].
J. Maldacena, S. H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].
Q.-Q. Zhao, Y.-Z. Li and H. Lü, Static equilibria of charged particles around charged black holes: chaos bound and its violations, Phys. Rev. D 98 (2018) 124001 [arXiv:1809.04616] [INSPIRE].
X. Guo, K. Liang, B. Mu, P. Wang and M. Yang, Minimal length effects on motion of a particle in Rindler space, Chin. Phys. C 45 (2021) 023115 [arXiv:2007.07744] [INSPIRE].
L. A. Pando Zayas and C. A. Terrero-Escalante, Chaos in the gauge/gravity correspondence, JHEP 09 (2010) 094 [arXiv:1007.0277] [INSPIRE].
D.-Z. Ma, J.-P. Wu and J. Zhang, Chaos from the ring string in a Gauss-Bonnet black hole in AdS5 space, Phys. Rev. D 89 (2014) 086011 [arXiv:1405.3563] [INSPIRE].
P. Basu, P. Chaturvedi and P. Samantray, Chaotic dynamics of strings in charged black hole backgrounds, Phys. Rev. D 95 (2017) 066014 [arXiv:1607.04466] [INSPIRE].
K. Hashimoto, K. Murata and N. Tanahashi, Chaos of Wilson loop from string motion near black hole horizon, Phys. Rev. D 98 (2018) 086007 [arXiv:1803.06756] [INSPIRE].
M. Čubrović, The bound on chaos for closed strings in Anti-de Sitter black hole backgrounds, JHEP 12 (2019) 150 [arXiv:1904.06295] [INSPIRE].
D.-Z. Ma, D. Zhang, G. Fu and J.-P. Wu, Chaotic dynamics of string around charged black brane with hyperscaling violation, JHEP 01 (2020) 103 [arXiv:1911.09913] [INSPIRE].
D.-Z. Ma, F. Xia, D. Zhang, G.-Y. Fu and J.-P. Wu, Chaotic dynamics of string around the conformal black hole, Eur. Phys. J. C 82 (2022) 372 [arXiv:2205.00226] [INSPIRE].
V. Cardoso, A. S. Miranda, E. Berti, H. Witek and V. T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev. D 79 (2009) 064016 [arXiv:0812.1806] [INSPIRE].
G. Guo, P. Wang, H. Wu and H. Yang, Quasinormal modes of black holes with multiple photon spheres, JHEP 06 (2022) 060 [arXiv:2112.14133] [INSPIRE].
Y.-Q. Lei and X.-H. Ge, Circular motion of charged particles near a charged black hole, Phys. Rev. D 105 (2022) 084011 [arXiv:2111.06089] [INSPIRE].
A. V. Frolov and A. L. Larsen, Chaotic scattering and capture of strings by black hole, Class. Quant. Grav. 16 (1999) 3717 [gr-qc/9908039] [INSPIRE].
G. Benettin, L. Galgani and J. M. Strelcyn, Kolmogorov entropy and numerical experiments, Phys. Rev. A 14 (1976) 2338.
J. H. Verner, High-order explicit runge-kutta pairs with low stage order, Appl. Num. Math. 22 (1996) 345.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2205.02122
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Guo, X., Lu, Y., Mu, B. et al. Probing phase structure of black holes with Lyapunov exponents. J. High Energ. Phys. 2022, 153 (2022). https://doi.org/10.1007/JHEP08(2022)153
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)153
Keywords
- Black Holes
- Spacetime Singularities