Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Unsupervised event classification with graphs on classical and photonic quantum computers

  • Regular Article - Experimental Physics
  • Open Access
  • Published: 31 August 2021
  • volume 2021, Article number: 170 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Unsupervised event classification with graphs on classical and photonic quantum computers
Download PDF
  • Andrew Blance  ORCID: orcid.org/0000-0003-1082-06541,2 &
  • Michael Spannowsky1 
  • 297 Accesses

  • 22 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Photonic Quantum Computers provide several benefits over the discrete qubit-based paradigm of quantum computing. By using the power of continuous-variable computing we build an anomaly detection model to use on searches for New Physics. Our model uses Gaussian Boson Sampling, a #P-hard problem and thus not efficiently accessible to classical devices. This is used to create feature vectors from graph data, a natural format for representing data of high-energy collision events. A simple K-means clustering algorithm is used to provide a baseline method of classification. We then present a novel method of anomaly detection, combining the use of Gaussian Boson Sampling and a quantum extension to K-means known as Q-means. This is found to give equivalent results compared to the classical clustering version while also reducing the \( \mathcal{O} \) complexity, with respect to the sample’s feature-vector length, from \( \mathcal{O}(N) \) to \( \mathcal{O}\left(\log (N)\right) \).

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. T. S. Roy and A. H. Vijay, A robust anomaly finder based on autoencoders, arXiv:1903.02032 [INSPIRE].

  2. A. Blance, M. Spannowsky and P. Waite, Adversarially-trained autoencoders for robust unsupervised new physics searches, JHEP 10 (2019) 047 [arXiv:1905.10384] [INSPIRE].

    Article  ADS  Google Scholar 

  3. V. Mikuni and F. Canelli, Unsupervised clustering for collider physics, Phys. Rev. D 103 (2021) 092007 [arXiv:2010.07106] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Abdughani, J. Ren, L. Wu and J. M. Yang, Probing stop pair production at the LHC with graph neural networks, JHEP 08 (2019) 055 [arXiv:1807.09088] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Arjona Martínez, O. Cerri, M. Pierini, M. Spiropulu and J.-R. Vlimant, Pileup mitigation at the Large Hadron Collider with graph neural networks, Eur. Phys. J. Plus 134 (2019) 333 [arXiv:1810.07988] [INSPIRE].

    Article  Google Scholar 

  6. J. Shlomi, P. Battaglia and J.-R. Vlimant, Graph neural networks in particle physics, Mach. Learn. Sci. Tech. 2 (2021) 021001.

    Article  Google Scholar 

  7. P. W. Shor, Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Sci. Statist. Comput. 26 (1997) 1484 [quant-ph/9508027] [INSPIRE].

  8. L. K. Grover, A Fast quantum mechanical algorithm for database search, quant-ph/9605043.

  9. S. Abel, N. Chancellor and M. Spannowsky, Quantum computing for quantum tunneling, Phys. Rev. D 103 (2021) 016008 [arXiv:2003.07374] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. S. Abel and M. Spannowsky, Observing the fate of the false vacuum with a quantum laboratory, P. R. X. Quantum. 2 (2021) 010349 [arXiv:2006.06003] [INSPIRE].

    Article  Google Scholar 

  11. K. L. Ng, B. Opanchuk, M. Thenabadu, M. Reid and P. D. Drummond, The fate of the false vacuum: Finite temperature, entropy and topological phase in quantum simulations of the early universe, P. R. X. Quantum. 2 (2021) 010350 [arXiv:2010.08665] [INSPIRE].

    Article  Google Scholar 

  12. A. Mott, J. Job, J. R. Vlimant, D. Lidar and M. Spiropulu, Solving a Higgs optimization problem with quantum annealing for machine learning, Nature 550 (2017) 375 [INSPIRE].

    Article  ADS  Google Scholar 

  13. A. Blance and M. Spannowsky, Quantum Machine Learning for Particle Physics using a Variational Quantum Classifier, arXiv:2010.07335 [INSPIRE].

  14. S. P. Jordan, K. S. M. Lee and J. Preskill, Quantum Computation of Scattering in Scalar Quantum Field Theories, Quant. Inf. Comput. 14 (2014) 1014 [arXiv:1112.4833] [INSPIRE].

    MathSciNet  Google Scholar 

  15. L. García-Álvarez et al., Fermion-Fermion Scattering in Quantum Field Theory with Superconducting Circuits, Phys. Rev. Lett. 114 (2015) 070502 [arXiv:1404.2868] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. P. Jordan, K. S. M. Lee and J. Preskill, Quantum Algorithms for Fermionic Quantum Field Theories, arXiv:1404.7115 [INSPIRE].

  17. S. P. Jordan, H. Krovi, K. S. M. Lee and J. Preskill, BQP-completeness of Scattering in Scalar Quantum Field Theory, Quantum 2 (2018) 44 [arXiv:1703.00454] [INSPIRE].

    Article  Google Scholar 

  18. J. Preskill, Simulating quantum field theory with a quantum computer, PoS LATTICE2018 (2018) 024 [arXiv:1811.10085] [INSPIRE].

  19. A. H. Moosavian, J. R. Garrison and S. P. Jordan, Site-by-site quantum state preparation algorithm for preparing vacua of fermionic lattice field theories, arXiv:1911.03505 [INSPIRE].

  20. NuQS collaboration, σ Models on Quantum Computers, Phys. Rev. Lett. 123 (2019) 090501 [arXiv:1903.06577] [INSPIRE].

  21. NuQS collaboration, Gluon Field Digitization for Quantum Computers, Phys. Rev. D 100 (2019) 114501 [arXiv:1906.11213] [INSPIRE].

  22. NuQS collaboration, Parton physics on a quantum computer, Phys. Rev. Res. 2 (2020) 013272 [arXiv:1908.10439] [INSPIRE].

  23. NuQS collaboration, Suppressing Coherent Gauge Drift in Quantum Simulations, arXiv:2005.12688 [INSPIRE].

  24. I. Márquez-Mártin, P. Arnault, G. Di Molfetta and A. Pérez, Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks, Phys. Rev. A 98 (2018) 032333 [arXiv:1808.04488] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Arrighi, G. Di Molfetta, I. Márquez-Martín and A. Pérez, Dirac equation as a quantum walk over the honeycomb and triangular lattices, Phys. Rev. A 97 (2018) 062111 [arXiv:1803.01015] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Jay, F. Debbasch and J. B. Wang, Dirac quantum walks on triangular and honeycomb lattices, Phys. Rev. A 99 (2019) 032113 [arXiv:1803.01304] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Di Molfetta and P. Arrighi, A quantum walk with both a continuous-time and a continuous-spacetime limit, arXiv:1906.04483 [INSPIRE].

  28. H. Lamm and S. Lawrence, Simulation of Nonequilibrium Dynamics on a Quantum Computer, Phys. Rev. Lett. 121 (2018) 170501 [arXiv:1806.06649] [INSPIRE].

    Article  ADS  Google Scholar 

  29. NuQS collaboration, Quantum Simulation of Field Theories Without State Preparation, arXiv:2001.11490 [INSPIRE].

  30. A. Y. Wei, P. Naik, A. W. Harrow and J. Thaler, Quantum Algorithms for Jet Clustering, Phys. Rev. D 101 (2020) 094015 [arXiv:1908.08949] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. K. T. Matchev, P. Shyamsundar and J. Smolinsky, A quantum algorithm for model independent searches for new physics, arXiv:2003.02181 [INSPIRE].

  32. S. Lloyd and S. L. Braunstein, Quantum computation over continuous variables, Phys. Rev. Lett. 82 (1999) 1784 [quant-ph/9810082] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. T. R. Bromley et al., Applications of near-term photonic quantum computers: software and algorithms, Quantum Sci. Technol. 5 (2020) 034010.

    Article  ADS  Google Scholar 

  34. N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada and S. Lloyd, Continuous-variable quantum neural networks, Phys. Rev. Res. 1 (2019) 033063.

    Article  Google Scholar 

  35. S. Aaronson and A. Arkhipov, The computational complexity of linear optics, arXiv:1011.3245.

  36. C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn and I. Jex, Gaussian boson sampling, Phys. Rev. Lett. 119 (2017) 170501.

    Article  ADS  Google Scholar 

  37. M. Schuld, K. Brádler, R. Israel, D. Su and B. Gupt, Measuring the similarity of graphs with a gaussian boson sampler, Phys. Rev. A 101 (2020) 032314.

    Article  ADS  Google Scholar 

  38. L. Petit et al., Universal quantum logic in hot silicon qubits, Nature 580 (2020) 355.

    Article  ADS  Google Scholar 

  39. S. Lloyd, M. Mohseni and P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning, arXiv:1307.0411.

  40. D. Kopczyk, Quantum machine learning for data scientists, arXiv:1804.10068.

  41. A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton and A. Thalapillil, Unburied Higgs boson: Jet substructure techniques for searching for Higgs’ decay into gluons, Phys. Rev. D 84 (2011) 074022 [arXiv:1006.1650] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C.-R. Chen, M. M. Nojiri and W. Sreethawong, Search for the Elusive Higgs Boson Using Jet Structure at LHC, JHEP 11 (2010) 012 [arXiv:1006.1151] [INSPIRE].

    Article  ADS  Google Scholar 

  43. ATLAS collaboration, Search for Higgs boson decays into two spin-0 particles in the bbμμ final state with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 13 TeV, ATLAS-CONF-2021-009 (2021).

  44. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  45. J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new Higgs search channel at the LHC, AIP Conf. Proc. 1078 (2009) 189 [arXiv:0809.2530] [INSPIRE].

    ADS  Google Scholar 

  46. D. E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, vol. 958, Springer (2019) [DOI] [arXiv:1901.10342] [INSPIRE].

  48. D. E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Cacciari, G. P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. Y. L. Dokshitzer, G. D. Leder, S. Moretti and B. R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks, arXiv:1609.02907 [INSPIRE].

  53. F. Pedregosa et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825.

    MathSciNet  MATH  Google Scholar 

  54. N. de Lara and E. Pineau, A simple baseline algorithm for graph classification, arXiv:1810.09155.

  55. S. Lloyd, Least squares quantization in pcm, IEEE Trans. Inform. Theory 28 (1982) 129.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. E. Celebi, H. A. Kingravi and P. A. Vela, A comparative study of efficient initialization methods for the k-means clustering algorithm, Expert Syst. Appl. 40 (2013) 200.

    Article  Google Scholar 

  57. D. J. Brod, E. F. Galvão, A. Crespi, R. Osellame, N. Spagnolo and F. Sciarrino, Photonic implementation of boson sampling: a review, Adv. Photonics 1 (2019) 034001.

    ADS  Google Scholar 

  58. S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77 (2005) 513 [quant-ph/0410100] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy and C. Weedbrook, Strawberry fields: A software platform for photonic quantum computing, Quantum 3 (2019) 129.

    Article  Google Scholar 

  60. K. Brádler, P.-L. Dallaire-Demers, P. Rebentrost, D. Su and C. Weedbrook, Gaussian boson sampling for perfect matchings of arbitrary graphs, Phys. Rev. A 98 (2018) 032310.

    Article  ADS  Google Scholar 

  61. L. Valiant, The complexity of computing the permanent, Theor. Comput. Sci. 8 (1979) 189.

    Article  MathSciNet  MATH  Google Scholar 

  62. W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer and I. A. Walmsley, Optimal design for universal multiport interferometers, Optica 3 (2016) 1460.

    Article  ADS  Google Scholar 

  63. N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn and K. Borgwardt, Efficient graphlet kernels for large graph comparison, in Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics, D. van Dyk and M. Welling, eds., vol. 5 of Proc. Mach. Learn. Res., pp. 488–495, PMLR, Hilton Clearwater Beach Resort, Clearwater Beach, Florida, U.S.A., 16–18 April 2009.

  64. I. Kerenidis, J. Landman, A. Luongo and A. Prakash, q-means: A quantum algorithm for unsupervised machine learning, arXiv:1812.03584.

  65. J. C. Garcia-Escartin and P. Chamorro-Posada, SWAP test and Hong-Ou-Mandel effect are equivalent, Phys. Rev. A 87 (2013) 052330.

    Article  ADS  Google Scholar 

  66. V. Bergholm et al., Pennylane: Automatic differentiation of hybrid quantum-classical computations, arXiv:1811.04968.

Download references

Author information

Authors and Affiliations

  1. IPPP, Department of Physics, Durham University, Durham, DH1 3LE, U.K.

    Andrew Blance & Michael Spannowsky

  2. Institute for Data Science, Durham University, Durham, DH1 3LE, U.K.

    Andrew Blance

Authors
  1. Andrew Blance
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Michael Spannowsky
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andrew Blance.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.03897

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blance, A., Spannowsky, M. Unsupervised event classification with graphs on classical and photonic quantum computers. J. High Energ. Phys. 2021, 170 (2021). https://doi.org/10.1007/JHEP08(2021)170

Download citation

  • Received: 03 May 2021

  • Revised: 29 June 2021

  • Accepted: 09 August 2021

  • Published: 31 August 2021

  • DOI: https://doi.org/10.1007/JHEP08(2021)170

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Hadron-Hadron scattering (experiments)
  • Particle correlations and fluctuations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature