Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
The Standard Model quiver in de Sitter string compactifications
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

D-type conformal matter and SU/USp quivers

11 June 2018

Hee-Cheol Kim, Shlomo S. Razamat, … Gabi Zafrir

On de Sitter string vacua from anti-d3-branes in the large volume scenario

29 March 2021

Chiara Crinò, Fernando Quevedo & Roberto Valandro

Quiver Yangian from crystal melting

10 November 2020

Wei Li & Masahito Yamazaki

Quiver Yangian and Supersymmetric Quantum Mechanics

06 September 2022

Dmitry Galakhov & Masahito Yamazaki

New N $$ \mathcal{N} $$ = (0, 4) AdS3 near-horizons in Type IIB

06 April 2021

Federico Faedo, Yolanda Lozano & Nicolò Petri

The moduli spaces of S-fold CFTs

04 January 2019

Ivan Garozzo, Gabriele Lo Monaco & Noppadol Mekareeya

Holonomy saddles and 5d BPS quivers

14 October 2022

Qiang Jia & Piljin Yi

Magnetic quivers, Higgs branches, and 6d N $$ \mathcal{N} $$ = (1, 0) theories — orthogonal and symplectic gauge groups

27 February 2020

Santiago Cabrera, Amihay Hanany & Marcus Sperling

New AdS2 supergravity duals of 4d SCFTs with defects

27 October 2021

Yolanda Lozano, Nicolò Petri & Cristian Risco

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 August 2021

The Standard Model quiver in de Sitter string compactifications

  • M. Cicoli1,2,
  • I. García Etxebarria3,
  • F. Quevedo4,
  • A. Schachner  ORCID: orcid.org/0000-0002-7287-14764,
  • P. Shukla5 &
  • …
  • R. Valandro6,7 

Journal of High Energy Physics volume 2021, Article number: 109 (2021) Cite this article

  • 123 Accesses

  • 16 Citations

  • 5 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We argue that the Standard Model quiver can be embedded into compact Calabi-Yau geometries through orientifolded D3-branes at del Pezzo singularities dPn with n ≥ 5 in a framework including moduli stabilisation. To illustrate our approach, we explicitly construct a local dP5 model via a combination of Higgsing and orientifolding. This procedure reduces the original dP5 quiver gauge theory to the Left-Right symmetric model with three families of quarks and leptons as well as a Higgs sector to further break the symmetries to the Standard Model gauge group. We embed this local model in a globally consistent Calabi-Yau flux compactification with tadpole and Freed-Witten anomaly cancellations. The model features closed string moduli stabilisation with a de Sitter minimum from T-branes, supersymmetry broken by the Kähler moduli, and the MSSM as the low energy spectrum. We further discuss phenomenological and cosmological implications of this construction.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. R. Blumenhagen, L. Görlich, B. Körs and D. Lüst, Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP 10 (2000) 006 [hep-th/0007024] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103 [hep-th/0011073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R. Blumenhagen, B. Körs, D. Lüst and T. Ott, The standard model from stable intersecting brane world orbifolds, Nucl. Phys. B 616 (2001) 3 [hep-th/0107138] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Cvetič, G. Shiu and A.M. Uranga, Three family supersymmetric standard-like models from intersecting brane worlds, Phys. Rev. Lett. 87 (2001) 201801 [hep-th/0107143] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J.P. Conlon, A. Maharana and F. Quevedo, Towards Realistic String Vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Blumenhagen, V. Braun, T.W. Grimm and T. Weigand, GUTs in Type JIB Orientifold Compactifications, Nucl. Phys. B 815 (2009) 1 [arXiv:0811.2936] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. R. Donagi and M. Wijnholt, Model Building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory-I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C. Beasley, J.J. Heckman and C. Vafa, GUTs and Exceptional Branes in F-theory-II: Experimental Predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R. Donagi and M. Wijnholt, Breaking GUT Groups in F-theory, Adv. Theor. Math. Phys. 15 (2011) 1523 [arXiv:0808.2223] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Cvetič, J. Halverson, L. Lin, M. Liu and J. Tian, Quadrillion F-Theory Compactifications with the Exact Chiral Spectrum of the Standard Model, Phys. Rev. Lett. 123 (2019) 101601 [arXiv:1903.00009] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-branes at obstructed geometries, JHEP 06 (2006) 031 [hep-th/0604136] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Franco, Bipartite Field Theories: from D-brane Probes to Scattering Amplitudes, JHEP 11 (2012) 141 [arXiv:1207.0807] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S. Franco and A. Uranga, Bipartite Field Theories from D-branes, JHEP 04 (2014) 161 [arXiv:1306.6331] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Bianchi, G. Inverso, J.F. Morales and D. Ricci Pacifici, Unoriented Quivers with Flavour, JHEP 01 (2014) 128 [arXiv:1307.0466] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Bianchi, D. Bufalini, S. Mancani and F. Riccioni, Mass deformations of unoriented quiver theories, JHEP 07 (2020) 015 [arXiv:2003.09620] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo Singularities: Global Embedding and Moduli Stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D3/D7 Branes at Singularities: Constraints from Global Embedding and Moduli Stabilisation, JHEP 07 (2013) 150 [arXiv:1304.0022] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, The Web of D-branes at Singularities in Compact Calabi-Yau Manifolds, JHEP 05 (2013) 114 [arXiv:1304.2771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP 05 (2014) 001 [arXiv:1312.0014] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. Cicoli, I. Garcìa-Etxebarria, C. Mayrhofer, F. Quevedo, P. Shukla and R. Valandro, Global Orientifolded Quivers with Inflation, JHEP 11 (2017) 134 [arXiv:1706.06128] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. M. Wijnholt, Geometry of Particle Physics, Adv. Theor. Math. Phys. 13 (2009) 947 [hep-th/0703047] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  24. L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].

    MathSciNet  Google Scholar 

  25. P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds, hypercharge embeddings and the Standard Model, Nucl. Phys. B 759 (2006) 83 [hep-th/0605226] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. D. Berenstein and S. Pinansky, The Minimal Quiver Standard Model, Phys. Rev. D 75 (2007) 095009 [hep-th/0610104] [INSPIRE].

  27. J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].

  28. R.N. Mohapatra and J.C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Cicoli, M. Kreuzer and C. Mayrhofer, Toric K3-Fibred Calabi-Yau Manifolds with del Pezzo Divisors for String Compactifications, JHEP 02 (2012) 002 [arXiv:1107.0383] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  32. D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819 [hep-th/9907189] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. Cicoli, F. Quevedo and R. Valandro, de Sitter from T-branes, JHEP 03 (2016) 141 [arXiv:1512.04558] [INSPIRE].

  36. E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343 [hep-th/9604030] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. J.P. Conlon and F.G. Pedro, Moduli Redefinitions and Moduli Stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Cicoli and A. Mazumdar, Reheating for Closed String Inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Cicoli and A. Mazumdar, Inflation in string theory: A Graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [INSPIRE].

  42. R. Allahverdi, I. Broeckel, M. Cicoli and J.K. Osiński, Superheavy dark matter from string theory, JHEP 02 (2021) 026 [arXiv:2010.03573] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. R. Allahverdi, M. Cicoli and F. Muia, Affleck-Dine Baryogenesis in Type IIB String Models, JHEP 06 (2016) 153 [arXiv:1604.03120] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].

  45. T. Higaki and F. Takahashi, Dark Radiation and Dark Matter in Large Volume Compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Cicoli and F. Muia, General Analysis of Dark Radiation in Sequestered String Models, JHEP 12 (2015) 152 [arXiv:1511.05447] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. P. Wilson, The kähler cone on calabi-yau threefolds, Invent. Math. 107 (1992) 561.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Y. Hayakawa, Degenaration of Calabi-Yau Manifold with W-P Metric, alg-geom/9507016.

  49. P.S. Aspinwall, An N = 2 dual pair and a phase transition, Nucl. Phys. B 460 (1996) 57 [hep-th/9510142] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. M. Bershadsky, C. Vafa and V. Sadov, D strings on D manifolds, Nucl. Phys. B 463 (1996) 398 [hep-th/9510225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. S.H. Katz, D.R. Morrison and M.R. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. T.-m. Chiang, B.R. Greene, M. Gross and Y. Kanter, Black hole condensation and the web of Calabi-Yau manifolds, Nucl. Phys. B Proc. Suppl. 46 (1996) 82 [hep-th/9511204] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl. Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

  54. M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962) 331.

    Article  MathSciNet  MATH  Google Scholar 

  56. C. Cordova, Decoupling Gravity in F-theory, Adv. Theor. Math. Phys. 15 (2011) 689 [arXiv:0910.2955] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  57. E.R. Sharpe, D-branes, derived categories, and Grothendieck groups, Nucl. Phys. B 561 (1999) 433 [hep-th/9902116] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. M.R. Douglas, D-branes, categories and N = 1 supersymmetry, J. Math. Phys. 42 (2001) 2818 [hep-th/0011017] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. P.S. Aspinwall, D-branes on Calabi-Yau manifolds, in Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2003): Recent Trends in String Theory, (2004) [DOI] [hep-th/0403166] [INSPIRE].

  60. M.R. Douglas, B. Fiol and C. Romelsberger, Stability and BPS branes, JHEP 09 (2005) 006 [hep-th/0002037] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. M.R. Douglas, B. Fiol and C. Romelsberger, The Spectrum of BPS branes on a noncompact Calabi-Yau, JHEP 09 (2005) 057 [hep-th/0003263] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A Geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7 (2003) 1117 [hep-th/0212021] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  64. C.P. Herzog, Seiberg duality is an exceptional mutation, JHEP 08 (2004) 064 [hep-th/0405118] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. P.S. Aspinwall and I.V. Melnikov, D-branes on vanishing del Pezzo surfaces, JHEP 12 (2004) 042 [hep-th/0405134] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. C.P. Herzog and R.L. Karp, Exceptional collections and D-branes probing toric singularities, JHEP 02 (2006) 061 [hep-th/0507175] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. A. Hanany, C.P. Herzog and D. Vegh, Brane tilings and exceptional collections, JHEP 07 (2006) 001 [hep-th/0602041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. B.V. Karpov and D.Y. Nogin, Three-block exceptional collections over Del Pezzo surfaces, Izv. Math. 62 (1998) 429 [alg-geom/9703027].

    Article  MathSciNet  MATH  Google Scholar 

  69. C.P. Herzog, Exceptional collections and del Pezzo gauge theories, JHEP 04 (2004) 069 [hep-th/0310262] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. C.P. Herzog and J. Walcher, Dibaryons from exceptional collections, JHEP 09 (2003) 060 [hep-th/0306298] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106 [hep-th/0508089] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at Singularities, Compactification, and Hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)’s in type-I and type IIB D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. K.D. Kennaway, Brane Tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. D. Malyshev and H. Verlinde, D-branes at singularities and string phenomenology, Nucl. Phys. B Proc. Suppl. 171 (2007) 139 [arXiv:0711.2451] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. K.A. Intriligator and N. Seiberg, The Runaway quiver, JHEP 02 (2006) 031 [hep-th/0512347] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. S. Krippendorf, M.J. Dolan, A. Maharana and F. Quevedo, D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics, JHEP 06 (2010) 092 [arXiv:1002.1790] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. M.J. Dolan, S. Krippendorf and F. Quevedo, Towards a Systematic Construction of Realistic D-brane Models on a del Pezzo Singularity, JHEP 10 (2011) 024 [arXiv:1106.6039] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. J.J. Heckman, C. Vafa, H. Verlinde and M. Wijnholt, Cascading to the MSSM, JHEP 06 (2008) 016 [arXiv:0711.0387] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. M. Yamazaki, Brane Tilings and Their Applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. R. Argurio et al., Dimers, Orientifolds and Anomalies, JHEP 02 (2021) 153 [arXiv:2009.11291] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. M. Wijnholt, Parameter space of quiver gauge theories, Adv. Theor. Math. Phys. 12 (2008) 711 [hep-th/0512122] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  83. I. García-Etxebarria, F. Quevedo and R. Valandro, Global String Embeddings for the Nilpotent Goldstino, JHEP 02 (2016) 148 [arXiv:1512.06926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. S. AbdusSalam, S. Abel, M. Cicoli, F. Quevedo and P. Shukla, A systematic approach to Kähler moduli stabilisation, JHEP 08 (2020) 047 [arXiv:2005.11329] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  85. M. Cicoli, D. Ciupke, C. Mayrhofer and P. Shukla, A Geometrical Upper Bound on the Inflaton Range, JHEP 05 (2018) 001 [arXiv:1801.05434] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. R. Altman, J. Gray, Y.-H. He, V. Jejjala and B.D. Nelson, A Calabi-Yau Database: Threefolds Constructed from the Kreuzer-Skarke List, JHEP 02 (2015) 158 [arXiv:1411.1418] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. M. Demirtas, L. McAllister and A. Rios-Tascon, Bounding the Kreuzer-Skarke Landscape, arXiv:2008.01730 [INSPIRE].

  88. R. Blumenhagen, B. Jurke, T. Rahn and H. Roschy, Cohomology of Line Bundles: A Computational Algorithm, J. Math. Phys. 51 (2010) 103525 [arXiv:1003.5217] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. R. Blumenhagen, B. Jurke and T. Rahn, Computational Tools for Cohomology of Toric Varieties, Adv. High Energy Phys. 2011 (2011) 152749 [arXiv:1104.1187] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  90. A. Collinucci and R. Savelli, On Flux Quantization in F-theory, JHEP 02 (2012) 015 [arXiv:1011.6388] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. P. Berglund and I. Garcia-Etxebarria, D-brane instantons on non-Spin cycles, JHEP 01 (2013) 056 [arXiv:1210.1221] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. S.H. Katz and E. Sharpe, D-branes, open string vertex operators, and Ext groups, Adv. Theor. Math. Phys. 6 (2003) 979 [hep-th/0208104] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  93. T. Gomez and E.R. Sharpe, D-branes and scheme theory, hep-th/0008150 [INSPIRE].

  94. A. Collinucci, F. Denef and M. Esole, D-brane Deconstructions in IIB Orientifolds, JHEP 02 (2009) 005 [arXiv:0805.1573] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. F. Marchesano, R. Savelli and S. Schwieger, Compact T-branes, JHEP 09 (2017) 132 [arXiv:1707.03797] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. F. Marchesano, R. Moraru and R. Savelli, A vanishing theorem for T-branes, JHEP 11 (2020) 002 [arXiv:2007.02960] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  97. A. Collinucci and R. Savelli, T-branes as branes within branes, JHEP 09 (2015) 161 [arXiv:1410.4178] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  99. M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with String Loop Moduli Stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. 608 (2001) 477] [hep-th/9906070] [INSPIRE].

  101. K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

    Article  ADS  Google Scholar 

  102. J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].

    Article  ADS  Google Scholar 

  103. L. Aparicio, D.G. Cerdeno and L.E. Ibáñez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  104. G. von Gersdorff and A. Hebecker, Kähler corrections for the volume modulus of flux compactifications, Phys. Lett. B 624 (2005) 270 [hep-th/0507131] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  106. M. Berg, M. Haack and B. Körs, String loop corrections to Kähler potentials in orientifolds, JHEP 11 (2005) 030 [hep-th/0508043] [INSPIRE].

    Article  ADS  Google Scholar 

  107. M. Berg, M. Haack and E. Pajer, Jumping Through Loops: On Soft Terms from Large Volume Compactifications, JHEP 09 (2007) 031 [arXiv:0704.0737] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  108. D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli Stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. M. Cicoli, F. Quevedo, R. Savelli, A. Schachner and R. Valandro, Systematics of the α Expansion in F-theory, arXiv:2106.04592 [INSPIRE].

  110. F. Marchesano, D. Prieto and M. Wiesner, F-theory flux vacua at large complex structure, arXiv:2105.09326 [INSPIRE].

  111. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  112. M. Demirtas, M. Kim, L. Mcallister and J. Moritz, Vacua with Small Flux Superpotential, Phys. Rev. Lett. 124 (2020) 211603 [arXiv:1912.10047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  113. R. Minasian, T.G. Pugh and R. Savelli, F-theory at order α′3, JHEP 10 (2015) 050 [arXiv:1506.06756] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  114. A. Cole, A. Schachner and G. Shiu, Searching the Landscape of Flux Vacua with Genetic Algorithms, JHEP 11 (2019) 045 [arXiv:1907.10072] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  117. L. Aparicio, M. Cicoli, S. Krippendorf, A. Maharana, F. Muia and F. Quevedo, Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].

    Article  ADS  Google Scholar 

  118. J.P. Conlon and E. Palti, Gauge Threshold Corrections for Local Orientifolds, JHEP 09 (2009) 019 [arXiv:0906.1920] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  119. J.P. Conlon and E. Palti, On Gauge Threshold Corrections for Local IIB/F-theory GUTs, Phys. Rev. D 80 (2009) 106004 [arXiv:0907.1362] [INSPIRE].

    Article  ADS  Google Scholar 

  120. R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking, and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  121. N. Barnaby, J.R. Bond, Z. Huang and L. Kofman, Preheating After Modular Inflation, JCAP 12 (2009) 021 [arXiv:0909.0503] [INSPIRE].

    Article  ADS  Google Scholar 

  122. S. Krippendorf, F. Muia and F. Quevedo, Moduli Stars, JHEP 08 (2018) 070 [arXiv:1806.04690] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  123. M. Cicoli, K. Dutta, A. Maharana and F. Quevedo, Moduli Vacuum Misalignment and Precise Predictions in String Inflation, JCAP 08 (2016) 006 [arXiv:1604.08512] [INSPIRE].

    Article  ADS  Google Scholar 

  124. M. Demirtas, M. Kim, L. McAllister and J. Moritz, Conifold Vacua with Small Flux Superpotential, Fortsch. Phys. 68 (2020) 2000085 [arXiv:2009.03312] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  125. R. Álvarez-García, R. Blumenhagen, M. Brinkmann and L. Schlechter, Small Flux Superpotentials for Type IIB Flux Vacua Close to a Conifold, arXiv:2009.03325 [INSPIRE].

  126. H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  127. K.S. Babu and R.N. Mohapatra, Minimal Supersymmetric Left-Right Model, Phys. Lett. B 668 (2008) 404 [arXiv:0807.0481] [INSPIRE].

    Article  ADS  Google Scholar 

  128. S. Franco, A. Hanany, D. Krefl, J. Park, A.M. Uranga and D. Vegh, Dimers and orientifolds, JHEP 09 (2007) 075 [arXiv:0707.0298] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  129. A. Collinucci and I. García-Etxebarria, E6 Yukawa couplings in F-theory as D-brane instanton effects, JHEP 03 (2017) 155 [arXiv:1612.06874] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  130. A. Maleknejad, Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves, JHEP 07 (2016) 104 [arXiv:1604.03327] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. A. Maleknejad, SU(2)R and its Axion in Cosmology: A common Origin for Inflation, Cold Sterile Neutrinos, and Baryogenesis, arXiv:2012.11516 [INSPIRE].

  132. A. Maleknejad, Chiral Anomaly in SU(2)R-Axion Inflation and the New Prediction for Particle Cosmology, arXiv:2103.14611 [INSPIRE].

  133. I. García-Etxebarria, B. Heidenreich and T. Wrase, New N = 1 dualities from orientifold transitions — Part II: String Theory, JHEP 10 (2013) 006 [arXiv:1307.1701] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  134. M. Cicoli, D. Ciupke, V.A. Diaz, V. Guidetti, F. Muia and P. Shukla, Chiral Global Embedding of Fibre Inflation Models, JHEP 11 (2017) 207 [arXiv:1709.01518] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  135. X. Gao and P. Shukla, On Classifying the Divisor Involutions in Calabi-Yau Threefolds, JHEP 11 (2013) 170 [arXiv:1307.1139] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126, Bologna, Italy

    M. Cicoli

  2. INFN, Sezione di Bologna, viale Berti Pichat 6/2, 40127, Bologna, Italy

    M. Cicoli

  3. Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, U.K.

    I. García Etxebarria

  4. DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, U.K.

    F. Quevedo & A. Schachner

  5. ICTP, Strada Costiera 11, 34151, Trieste, Italy

    P. Shukla

  6. Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151, Trieste, Italy

    R. Valandro

  7. INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy

    R. Valandro

Authors
  1. M. Cicoli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. I. García Etxebarria
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. F. Quevedo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. A. Schachner
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. P. Shukla
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. R. Valandro
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Schachner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2106.11964

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cicoli, M., García Etxebarria, I., Quevedo, F. et al. The Standard Model quiver in de Sitter string compactifications. J. High Energ. Phys. 2021, 109 (2021). https://doi.org/10.1007/JHEP08(2021)109

Download citation

  • Received: 05 July 2021

  • Revised: 04 August 2021

  • Accepted: 04 August 2021

  • Published: 23 August 2021

  • DOI: https://doi.org/10.1007/JHEP08(2021)109

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • D-branes
  • Flux compactifications
  • Superstring Vacua
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.