Skip to main content
Log in

D-branes at toric singularities: model building, Yukawa couplings and flavour physics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss general properties of D-brane model building at toric singularities. Using dimer techniques to obtain the gauge theory from the structure of the singularity, we extract results on the matter sector and superpotential of the corresponding gauge theory. We show that the number of families in toric phases is always less than or equal to three, with a unique exception being the zeroth Hirzebruch surface. With the physical input of three generations we find that the lightest family of quarks is massless and the masses of the other two can be hierarchically separated. We compute the CKM matrix for explicit models in this setting and find the singularities possess sufficient structure to allow for realistic mixing between generations and CP violation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.P. Conlon and F. Quevedo, Gaugino and scalar masses in the landscape, JHEP 06 (2006) 029 [hep-th/0605141] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a bottom-up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [SPIRES].

    Article  ADS  Google Scholar 

  8. J.P. Conlon, A. Maharana and F. Quevedo, Towards realistic string vacua, JHEP 05 (2009) 109 [arXiv:0810.5660] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. S.P. de Alwis, Classical and quantum SUSY breaking effects in IIB local models, JHEP 03 (2010) 078 [arXiv:0912.2950] [SPIRES].

    Article  Google Scholar 

  10. R. Blumenhagen, L. Görlich, B. Körs and D. Lüst, Noncommutative compactifications of type-I strings on tori with magnetic background flux, JHEP 10 (2000) 006 [hep-th/0007024] [SPIRES].

    Article  ADS  Google Scholar 

  11. G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP 02 (2001) 047 [hep-ph/0011132] [SPIRES].

    Article  ADS  Google Scholar 

  12. R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [SPIRES].

    Article  ADS  Google Scholar 

  13. F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [SPIRES].

  16. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [SPIRES].

  18. H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory compactifications for supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [SPIRES].

    Article  ADS  Google Scholar 

  20. R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. C. Vafa, Geometry of grand unification, arXiv:0911.3008 [SPIRES].

  22. J.J. Heckman, Particle physics implications of F-theory, arXiv:1001.0577 [SPIRES].

  23. D. Berenstein, V. Jejjala and R.G. Leigh, The standard model on a D-brane, Phys. Rev. Lett. 88 (2002) 071602 [hep-ph/0105042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. J.F.G. Cascales, M.P. Garcia del Moral, F. Quevedo and A.M. Uranga, Realistic D-brane models on warped throats: fluxes, hierarchies and moduli stabilization, JHEP 02 (2004) 031 [hep-th/0312051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106 [hep-th/0508089] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Wijnholt, Geometry of particle physics, hep-th/0703047 [SPIRES].

  27. V. Balasubramanian, P. Berglund and I. Garcia-Etxebarria, Toric lego: a method for modular model building, JHEP 01 (2010) 076 [arXiv:0910.3616] [SPIRES].

    Article  Google Scholar 

  28. A. Font and L.E. Ibáñez, Yukawa structure from U(1) fluxes in F-theory grand unification, JHEP 02 (2009) 016 [arXiv:0811.2157] [SPIRES].

    Article  ADS  Google Scholar 

  29. J.J. Heckman and C. Vafa, Flavor hierarchy from F-theory, Nucl. Phys. B 837 (2010) 137 [arXiv:0811.2417] [SPIRES].

    Article  ADS  Google Scholar 

  30. J.J. Heckman and C. Vafa, CP violation and F-theory GUTs, arXiv:0904.3101 [SPIRES].

  31. L. Randall and D. Simmons-Duffin, Quark and lepton flavor physics from F-theory, arXiv:0904.1584 [SPIRES].

  32. S. Cecotti, M.C.N. Cheng, J.J. Heckman and C. Vafa, Yukawa couplings in F-theory and non-commutative geometry, arXiv:0910.0477 [SPIRES].

  33. E. Dudas and E. Palti, Froggatt-Nielsen models from E8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [SPIRES].

    Article  Google Scholar 

  34. J.P. Conlon and E. Palti, Aspects of flavour and supersymmetry in F-theory GUTs, JHEP 01 (2010) 029 [arXiv:0910.2413] [SPIRES].

    Article  Google Scholar 

  35. F. Marchesano and L. Martucci, Non-perturbative effects on seven-brane Yukawa couplings, arXiv:0910.5496 [SPIRES].

  36. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [SPIRES].

  37. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Franco et al., Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 3 [hep-th/0511287] [SPIRES].

    MathSciNet  Google Scholar 

  41. K.D. Kennaway, Brane tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. M. Yamazaki, Brane tilings and their applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [SPIRES].

    Article  MATH  Google Scholar 

  43. D.R. Gulotta, Properly ordered dimers, R-charges and an efficient inverse algorithm, JHEP 10 (2008) 014 [arXiv:0807.3012] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. C. Jarlskog, A basis independent formulation of the connection between quark mass matrices, CP-violation and experiment, Z. Phys. C 29 (1985) 491 [SPIRES].

    ADS  Google Scholar 

  45. C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [SPIRES].

    Article  ADS  Google Scholar 

  46. A. Hocker and Z. Ligeti, CP violation and the CKM matrix, Ann. Rev. Nucl. Part. Sci. 56 (2006) 501 [hep-ph/0605217] [SPIRES].

    Article  ADS  Google Scholar 

  47. I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. D.-E. Diaconescu and J. Gomis, Fractional branes and boundary states in orbifold theories, JHEP 10 (2000) 001 [hep-th/9906242] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. I. Brunner, M.R. Douglas, A.E. Lawrence and C. Romelsberger, D-branes on the quintic, JHEP 08 (2000) 015 [hep-th/9906200] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. F. Cachazo, B. Fiol, K.A. Intriligator, S. Katz and C. Vafa, A geometric unification of dualities, Nucl. Phys. B 628 (2002) 3 [hep-th/0110028] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. M. Wijnholt, Large volume perspective on branes at singularities, Adv. Theor. Math. Phys. 7 (2004) 1117 [hep-th/0212021] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  53. B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. N.C. Leung and C. Vafa, Branes and toric geometry, Adv. Theor. Math. Phys. 2 (1998) 91 [hep-th/9711013] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  55. I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. S. Franco and A.M. Uranga, Dynamical SUSY breaking at meta-stable minima from D-branes at obstructed geometries, JHEP 06 (2006) 031 [hep-th/0604136] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. S. Franco, A. Hanany, Y.-H. He and P. Kazakopoulos, Duality walls, duality trees and fractional branes, hep-th/0306092 [SPIRES].

  61. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  62. G. Aldazabal, L.E. Ibáñez and F. Quevedo, A D brane alternative to the MSSM, JHEP 02 (2000) 015 [hep-ph/0001083] [SPIRES].

    Article  ADS  Google Scholar 

  63. L.E. Ibáñez and A.M. Uranga, Instanton induced open string superpotentials and branes at singularities, JHEP 02 (2008) 103 [arXiv:0711.1316] [SPIRES].

    Article  ADS  Google Scholar 

  64. M. Cvetič, J. Halverson and R. Richter, Mass hierarchies from MSSM orientifold compactifications, arXiv:0909.4292 [SPIRES].

  65. G.K. Leontaris and N.D. Vlachos, D-brane inspired fermion mass textures, JHEP 01 (2010) 016 [arXiv:0909.4701] [SPIRES].

    Article  Google Scholar 

  66. P. Anastasopoulos, E. Kiritsis and A. Lionetto, On mass hierarchies in orientifold vacua, JHEP 08 (2009) 026 [arXiv:0905.3044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  67. R.P. Stanley, Topics in algebraic combinatorics, Course notes for Mathematics 192 (Algebraic Combinatorics), Harvard University, Cambridge U.S.A. (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Krippendorf.

Additional information

ArXiv ePrint: 1002.1790

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krippendorf, S., Dolan, M.J., Maharana, A. et al. D-branes at toric singularities: model building, Yukawa couplings and flavour physics. J. High Energ. Phys. 2010, 92 (2010). https://doi.org/10.1007/JHEP06(2010)092

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)092

Keywords

Navigation