Skip to main content
Log in

Five models for lepton mixing

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We produce five flavour models for the lepton sector. All five models fit perfectly well — at the 1σ level — the existing data on the neutrino mass-squared differences and on the lepton mixing angles. The models are based on the type I seesaw mechanism, on a \( {{\mathbb{Z}}_2} \) symmetry for each lepton flavour, and either on a (spontaneously broken) symmetry under the interchange of two lepton flavours or on a (spontaneously broken) CP symmetry incorporating that interchange — or on both symmetries simultaneously. Each model makes definite predictions both for the scale of the neutrino masses and for the phase δ in lepton mixing; the fifth model also predicts a correlation between the lepton mixing angles θ 12 and θ 23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  2. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  3. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  4. W. Grimus and L. Lavoura, Softly broken lepton numbers and maximal neutrino mixing, JHEP 07 (2001) 045 [hep-ph/0105212] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  6. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  7. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  8. W. Grimus and L. Lavoura, A nonstandard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].

    Article  ADS  Google Scholar 

  9. W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 [hep-ph/0305046] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 [hep-ph/0201008] [INSPIRE].

    Article  ADS  Google Scholar 

  11. L. Lavoura, Zeros of the inverted neutrino mass matrix, Phys. Lett. B 609 (2005) 317 [hep-ph/0411232] [INSPIRE].

    Article  ADS  Google Scholar 

  12. W. Grimus and L. Lavoura, μ-τ interchange symmetry and lepton mixing, Fortsch. Phys. 61 (2013) 535 [arXiv:1207.1678] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. W. Rodejohann, M. Tanimoto and A. Watanabe, Relating large U e3 to the ratio of neutrino mass-squared differences, Phys. Lett. B 710 (2012) 636 [arXiv:1201.4936] [INSPIRE].

    Article  ADS  Google Scholar 

  14. P. Ludl, S. Morisi and E. Peinado, The reactor mixing angle and CP-violation with two texture zeros in the light of T2K, Nucl. Phys. B 857 (2012) 411 [arXiv:1109.3393] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Altarelli, F. Feruglio and L. Merlo, Tri-bimaximal neutrino mixing and discrete flavour symmetries, Fortsch. Phys. 61 (2013) 507 [arXiv:1205.5133] [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. Ishimori and E. Ma, New Simple A 4 neutrino model for nonzero θ13 and large δCP, Phys. Rev. D 86 (2012) 045030 [arXiv:1205.0075] [INSPIRE].

    ADS  Google Scholar 

  17. E. Ma, Self-organizing neutrino mixing matrix, Phys. Rev. D 86 (2012) 117301 [arXiv:1209.3374] [INSPIRE].

    ADS  Google Scholar 

  18. C. Lam, Finite symmetry of leptonic mass matrices, Phys. Rev. D 87 (2013) 013001 [arXiv:1208.5527] [INSPIRE].

    ADS  Google Scholar 

  19. M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S.F. King, T. Neder and A.J. Stuart, Lepton mixing predictions from Δ(6n 2) family symmetry, arXiv:1305.3200 [INSPIRE].

  21. C. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].

    ADS  Google Scholar 

  24. L. Lavoura, On a possible relationship between lepton mixing and the stability of dark matter, J. Phys. G 39 (2012) 025202 [arXiv:1109.6854] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Blum, C. Hagedorn and M. Lindner, Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].

    ADS  Google Scholar 

  26. P. Ko, T. Kobayashi, J.-h. Park and S. Raby, String-derived D 4 flavor symmetry and phenomenological implications, Phys. Rev. D 76 (2007) 035005 [Erratum ibid. D 76 (2007) 059901] [arXiv:0704.2807] [INSPIRE].

    ADS  Google Scholar 

  27. H. Ishimori et al., Soft supersymmetry breaking terms from D 4 × Z 2 lepton flavor symmetry, Phys. Rev. D 77 (2008) 115005 [arXiv:0803.0796] [INSPIRE].

    ADS  Google Scholar 

  28. C. Hagedorn and R. Ziegler, μ-τ symmetry and charged lepton mass hierarchy in a supersymmetric D 4 model, Phys. Rev. D 82 (2010) 053011 [arXiv:1007.1888] [INSPIRE].

    ADS  Google Scholar 

  29. D. Meloni, S. Morisi and E. Peinado, Stability of dark matter from the D 4 × Z 2 flavor group, Phys. Lett. B 703 (2011) 281 [arXiv:1104.0178] [INSPIRE].

    Article  ADS  Google Scholar 

  30. W. Grimus, L. Lavoura and B. Radovcic, Type II seesaw mechanism for Higgs doublets and the scale of new physics, Phys. Lett. B 674 (2009) 117 [arXiv:0902.2325] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  33. S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Bélanger, B. Dumont, U. Ellwanger, J. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].

    Article  Google Scholar 

  35. C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

    ADS  Google Scholar 

  36. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  37. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  38. W. Grimus and L. Lavoura, The Seesaw mechanism at arbitrary order: disentangling the small scale from the large scale, JHEP 11 (2000) 042 [hep-ph/0008179] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Holthausen, M. Lindner and M.A. Schmidt, CP and discrete flavour symmetries, JHEP 04 (2013) 122 [arXiv:1211.6953] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. F. Feruglio, C. Hagedorn and R. Ziegler, Lepton mixing parameters from discrete and CP symmetries, JHEP 07 (2013) 027 [arXiv:1211.5560] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Ecker, W. Grimus and W. Konetschny, Quark mass matrices in left-right symmetric gauge theories, Nucl. Phys. B 191 (1981) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  42. G. Ecker, W. Grimus and H. Neufeld, Spontaneous CP-violation in left-right symmetric gauge theories, Nucl. Phys. B 247 (1984) 70 [INSPIRE].

    Article  ADS  Google Scholar 

  43. P. Ferreira, W. Grimus, L. Lavoura and P. Ludl, Maximal CP-violation in lepton mixing from a Model with Δ(27) flavour symmetry, JHEP 09 (2012) 128 [arXiv:1206.7072] [INSPIRE].

    Article  ADS  Google Scholar 

  44. R. Mohapatra and C. Nishi, S 4 flavored CP symmetry for neutrinos, Phys. Rev. D 86 (2012) 073007 [arXiv:1208.2875] [INSPIRE].

    ADS  Google Scholar 

  45. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  46. R. de Putter et al., New neutrino mass bounds from Sloan Digital Sky Survey III data release 8 photometric luminous galaxies, Astrophys. J. 761 (2012) 12 [arXiv:1201.1909] [INSPIRE].

    Article  ADS  Google Scholar 

  47. Z. Hou et al., Constraints on cosmology from the cosmic microwave background power spectrum of the 2500-square degree SPT-SZ Survey, arXiv:1212.6267 [INSPIRE].

  48. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  49. W. Grimus and L. Lavoura, Soft lepton flavor violation in a multi Higgs doublet seesaw model, Phys. Rev. D 66 (2002) 014016 [hep-ph/0204070] [INSPIRE].

    ADS  Google Scholar 

  50. R. Alonso, M. Dhen, M. Gavela and T. Hambye, Muon conversion to electron in nuclei in type-I seesaw models, JHEP 01 (2013) 118 [arXiv:1209.2679] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. O. Ludl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, P.M., Lavoura, L. & Ludl, P.O. Five models for lepton mixing. J. High Energ. Phys. 2013, 113 (2013). https://doi.org/10.1007/JHEP08(2013)113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)113

Keywords

Navigation