Skip to main content
Log in

Anatomy of flavour-changing Z couplings in models with partial compositeness

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In models with partially composite quarks, like composite Higgs models or models with a warped extra dimension, the couplings of quarks to the Z boson generically receive non-universal corrections that are not only constrained by electroweak precision tests but also lead to flavour-changing neutral currents at tree level. The impact of these flavour-changing couplings on rare K and B decays is studied in two-site models for three scenarios: an anarchic strong sector with two different choices of fermion representations both leading to a custodial protection of the \( Z\to b\overline{b} \) coupling, and for a strong sector invariant under a U(2)3 flavour symmetry. In the complete numerical analysis, all relevant constraints from ΔF = 2 processes are taken into account. In all scenarios, visible effects in rare K and B decays like \( K\to \pi \nu \overline{\nu} \), B s μ + μ and BK μ + μ are possible that can be scrutinized experimentally in the near future. Characteristic correlations between observables allow to distinguish the different cases. To sample the large parameter space of the anarchic models, a new method is presented that allows larger statistics than conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  2. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

    Article  ADS  Google Scholar 

  4. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

    ADS  Google Scholar 

  6. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

    Article  ADS  Google Scholar 

  7. G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Barbieri, G. Isidori and D. Pappadopulo, Composite fermions in electroweak symmetry breaking, JHEP 02 (2009) 029 [arXiv:0811.2888] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Redi, Composite MFV and beyond, Eur. Phys. J. C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models, JHEP 12 (2008) 046 [arXiv:0806.1230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [INSPIRE].

    ADS  Google Scholar 

  15. M. Bauer, R. Malm and M. Neubert, A solution to the flavor problem of warped extra-dimension models, Phys. Rev. Lett. 108 (2012) 081603 [arXiv:1110.0471] [INSPIRE].

    Article  ADS  Google Scholar 

  16. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

  18. LHCb collaboration, First evidence for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  19. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  24. N. Vignaroli, ΔF = 1 constraints on composite Higgs models with LR parity, Phys. Rev. D 86 (2012) 115011 [arXiv:1204.0478] [INSPIRE].

    ADS  Google Scholar 

  25. M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A.J. Buras, B. Duling and S. Gori, The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Guadagnoli and G. Isidori, BR(B s μ + μ ) as an electroweak precision test, arXiv:1302.3909 [INSPIRE].

  30. J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K\to \pi \nu \overline{\nu} \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].

    ADS  Google Scholar 

  31. Y. Grossman and Y. Nir, \( {K_L}\to {\pi^0}\nu \overline{\nu} \) beyond the standard model, Phys. Lett. B 398 (1997) 163 [hep-ph/9701313] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Isidori and R. Unterdorfer, On the short distance constraints from K L,S μ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. De Bruyn et al., Probing new physics via the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,d μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Beylich, G. Buchalla and T. Feldmann, Theory of BK (∗) + decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [INSPIRE].

    Article  ADS  Google Scholar 

  37. W. Altmannshofer et al., Symmetries and asymmetries of BK μ + μ decays in the standard model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].

    Article  ADS  Google Scholar 

  38. W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].

    Article  ADS  Google Scholar 

  39. W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for new physics search in \( B\to {K^{*}}\nu \overline{\nu} \) , \( B\to K\nu \overline{\nu} \) and \( B\to {X_s}\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].

    Article  ADS  Google Scholar 

  40. S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D.M. Straub, New physics correlations in rare decays, arXiv:1012.3893 [INSPIRE].

  43. A.J. Buras, F. De Fazio and J. Girrbach, The anatomy of Zand Z with flavour changing neutral currents in the flavour precision era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, JHEP 08 (2012) 156 [arXiv:1204.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Delaunay, J.F. Kamenik, G. Perez and L. Randall, Charming CP-violation and dipole operators from RS flavor anarchy, JHEP 01 (2013) 027 [arXiv:1207.0474] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].

    Article  ADS  Google Scholar 

  49. UTfit collaboration, A. Bevan et al., Update of the unitarity triangle analysis, PoS(ICHEP 2010)270 [arXiv:1010.5089] [INSPIRE].

  50. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  51. A.J. Buras, D. Guadagnoli and G. Isidori, On ϵ K beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    Article  ADS  Google Scholar 

  53. A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ parameter and \( {B^0}-{{\overline{B}}^0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].

    Article  ADS  Google Scholar 

  54. Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].

  55. J. Brod and M. Gorbahn, ϵ K at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].

    ADS  Google Scholar 

  56. J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵK and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].

    Article  ADS  Google Scholar 

  57. CDF collaboration, A. Abulencia et al., Observation of \( B_s^0-\overline{B}_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [INSPIRE].

    Article  ADS  Google Scholar 

  58. LHCb collaboration, Tagged time-dependent angular analysis of \( B_s^0\to {J \left/ {{\psi \phi }} \right.} \) decays at LHCb, LHCb-CONF-2012-002 (2012).

  59. A.J. Buras, S. Jäger and J. Urban, Master formulae for ΔF = 2 NLO-QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Straub.

Additional information

ArXiv ePrint: 1302.4651

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straub, D.M. Anatomy of flavour-changing Z couplings in models with partial compositeness. J. High Energ. Phys. 2013, 108 (2013). https://doi.org/10.1007/JHEP08(2013)108

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)108

Keywords

Navigation