Anatomy of flavour-changing Z couplings in models with partial compositeness

  • David M. StraubEmail author


In models with partially composite quarks, like composite Higgs models or models with a warped extra dimension, the couplings of quarks to the Z boson generically receive non-universal corrections that are not only constrained by electroweak precision tests but also lead to flavour-changing neutral currents at tree level. The impact of these flavour-changing couplings on rare K and B decays is studied in two-site models for three scenarios: an anarchic strong sector with two different choices of fermion representations both leading to a custodial protection of the \( Z\to b\overline{b} \) coupling, and for a strong sector invariant under a U(2)3 flavour symmetry. In the complete numerical analysis, all relevant constraints from ΔF = 2 processes are taken into account. In all scenarios, visible effects in rare K and B decays like \( K\to \pi \nu \overline{\nu} \), B s μ + μ and BK μ + μ are possible that can be scrutinized experimentally in the near future. Characteristic correlations between observables allow to distinguish the different cases. To sample the large parameter space of the anarchic models, a new method is presented that allows larger statistics than conventional approaches.


Rare Decays Beyond Standard Model Technicolor and Composite Models 


  1. [1]
    D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Cacciapaglia et al., A GIM mechanism from extra dimensions, JHEP 04 (2008) 006 [arXiv:0709.1714] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Barbieri, G. Isidori and D. Pappadopulo, Composite fermions in electroweak symmetry breaking, JHEP 02 (2009) 029 [arXiv:0811.2888] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M. Redi, Composite MFV and beyond, Eur. Phys. J. C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models, JHEP 12 (2008) 046 [arXiv:0806.1230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Bauer, R. Malm and M. Neubert, A solution to the flavor problem of warped extra-dimension models, Phys. Rev. Lett. 108 (2012) 081603 [arXiv:1110.0471] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    LHCb collaboration, First evidence for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Vignaroli, ΔF = 1 constraints on composite Higgs models with LR parity, Phys. Rev. D 86 (2012) 115011 [arXiv:1204.0478] [INSPIRE].ADSGoogle Scholar
  25. [25]
    M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, The custodial Randall-Sundrum model: from precision tests to Higgs physics, JHEP 09 (2010) 014 [arXiv:1005.4315] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.J. Buras, B. Duling and S. Gori, The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    D. Guadagnoli and G. Isidori, BR(B sμ + μ ) as an electroweak precision test, arXiv:1302.3909 [INSPIRE].
  30. [30]
    J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K\to \pi \nu \overline{\nu} \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Y. Grossman and Y. Nir, \( {K_L}\to {\pi^0}\nu \overline{\nu} \) beyond the standard model, Phys. Lett. B 398 (1997) 163 [hep-ph/9701313] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    G. Isidori and R. Unterdorfer, On the short distance constraints from K L,Sμ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. De Bruyn et al., Probing new physics via the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,dμ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Beylich, G. Buchalla and T. Feldmann, Theory of BK (∗) + decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Altmannshofer et al., Symmetries and asymmetries of BK μ + μ decays in the standard model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for new physics search in \( B\to {K^{*}}\nu \overline{\nu} \) , \( B\to K\nu \overline{\nu} \) and \( B\to {X_s}\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Casagrande, F. Goertz, U. Haisch, M. Neubert and T. Pfoh, Flavor physics in the Randall-Sundrum model: I. Theoretical setup and electroweak precision tests, JHEP 10 (2008) 094 [arXiv:0807.4937] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    D.M. Straub, New physics correlations in rare decays, arXiv:1012.3893 [INSPIRE].
  43. [43]
    A.J. Buras, F. De Fazio and J. Girrbach, The anatomy of Zand Z with flavour changing neutral currents in the flavour precision era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Carena, S. Casagrande, F. Goertz, U. Haisch and M. Neubert, Higgs production in a warped extra dimension, JHEP 08 (2012) 156 [arXiv:1204.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    C. Delaunay, J.F. Kamenik, G. Perez and L. Randall, Charming CP-violation and dipole operators from RS flavor anarchy, JHEP 01 (2013) 027 [arXiv:1207.0474] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    UTfit collaboration, A. Bevan et al., Update of the unitarity triangle analysis, PoS(ICHEP 2010)270 [arXiv:1010.5089] [INSPIRE].
  50. [50]
    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A.J. Buras, D. Guadagnoli and G. Isidori, On ϵK beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ parameter and \( {B^0}-{{\overline{B}}^0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
  55. [55]
    J. Brod and M. Gorbahn, ϵK at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵK and ΔM K, Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    CDF collaboration, A. Abulencia et al., Observation of \( B_s^0-\overline{B}_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    LHCb collaboration, Tagged time-dependent angular analysis of \( B_s^0\to {J \left/ {{\psi \phi }} \right.} \) decays at LHCb, LHCb-CONF-2012-002 (2012).
  59. [59]
    A.J. Buras, S. Jäger and J. Urban, Master formulae for ΔF = 2 NLO-QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations