Skip to main content
Log in

Heavy-light decay topologies as a new strategy to discover a heavy gluon

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the collider phenomenology of the lightest Kaluza-Klein excitation of the gluon, G*, in theories with a warped extra dimension. We do so by means of a two-site effective lagrangian which includes only the lowest-lying spin-1 and spin-1/2 resonances. We point out the importance of the decays of G* to one SM plus one heavy fermion, that were overlooked in the previous literature. It turns out that, when kinematically allowed, such heavy-light decays are powerful channels for discovering the G*. In particular, we present a parton-level Montecarlo analysis of the final state W tb that follows from the decay of G* to one SM top or bottom quark plus its heavy partner. We find that at \( \sqrt {s} = 7\;{\text{TeV}} \) and with 10fb−1 of integrated luminosity, the LHC can discover a KK gluon with mass in the range M G*  = (1.8 − 2.2) TeV if its coupling to a pair of light quarks is \( {g_{{G*q\overline q }}} = \left( {0.2 - 0.5} \right){g_3} \). The same process is also competitive for the discovery of the top and bottom partners as well. We find, for example, that the LHC at \( \sqrt {s} = {7}\;{\text{TeV}} \) can discover a 1 TeV KK bottom quark with an integrated luminosity of (5.3 − 0.61) fb−1 for \( {g_{{G*q\overline q }}} = \left( {0.2 - 0.5} \right){g_3} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H. Davoudiasl, J. Hewett and T. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [INSPIRE].

    ADS  Google Scholar 

  4. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [INSPIRE].

    ADS  Google Scholar 

  7. B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [INSPIRE].

    Article  ADS  Google Scholar 

  8. B. Lillie, J. Shu and T.M. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [INSPIRE].

    ADS  Google Scholar 

  9. A. Djouadi, G. Moreau and R.K. Singh, Kaluza-Klein excitations of gauge bosons at the LHC, Nucl. Phys. B 797 (2008) 1 [arXiv:0706.4191] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Redi and A. Weiler, Flavor and CP invariant composite Higgs models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [INSPIRE].

    ADS  Google Scholar 

  13. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    ADS  Google Scholar 

  14. ATLAS collaboration, G. Aad et al., Search for new physics in the dijet mass distribution using 1 fb −1 of pp collision data at \( \sqrt {s} = 7\;TeV \) collected by the ATLAS detector, arXiv:1108.6311 [INSPIRE].

  15. CDF Collaboration, A search fo massive gluon decaying to top pair in lepton + jet channel, CDF Note 9164 (2008).

  16. D0 collaboration, Search for \( t\overline t \) resonances in the lepton + jets final state in \( p\overline p \) collision at \( \sqrt {s} = 1.96\;TeV \), D0Conf.Note5882(2009).

  17. ATLAS collaboration, A search for \( t\overline t \) resonances in the lepton plus jets channel in 200 pb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2011-087 (2011).

  18. ATLAS collaboration, A search for ttbar resonances in the dilepton channel in 1.04 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2011-123 (2011).

  19. CMS collaboration, Search for heavy narrow resonances decaying to ttbar in the muon + jets channel, PAS-EXO-11-055 (2011).

  20. CMS collaboration, Search for BSM \( t\overline t \) production in the boosted all-hadronic final state, PAS-EXO-11-006 (2011).

  21. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Carena, A.D. Medina, B. Panes, N.R. Shah and C.E. Wagner, Collider phenomenology of gauge-Higgs unification scenarios in warped extra dimensions, Phys. Rev. D 77 (2008) 076003 [arXiv:0712.0095] [INSPIRE].

    ADS  Google Scholar 

  24. B.A. Dobrescu, K. Kong and R. Mahbubani, Prospects for top-prime quark discovery at the Tevatron, JHEP 06 (2009) 001 [arXiv:0902.0792] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Vignaroli, A new strategy to discover heavy colored vectors at the early LHC, arXiv:1107.4558 [INSPIRE].

  26. J. Aguilar-Saavedra, Pair production of heavy Q = 2/3 singlets at LHC, Phys. Lett. B 625 (2005) 234 [Erratum ibid. B 633 (2006) 792-793] [hep-ph/0506187] [INSPIRE].

    ADS  Google Scholar 

  27. J. Aguilar-Saavedra, New signals in pair production of heavy Q = 2/3 singlets at LHC, PoS(TOP2006)003 [hep-ph/0603199] [INSPIRE].

  28. W. Skiba and D. Tucker-Smith, Using jet mass to discover vector quarks at the LHC, Phys. Rev. D 75 (2007) 115010 [hep-ph/0701247] [INSPIRE].

    ADS  Google Scholar 

  29. R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Azuelos et al., Exploring little Higgs models with ATLAS at the LHC, Eur. Phys. J. C 39S2 (2005) 13 [hep-ph/0402037] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Atre, M. Carena, T. Han and J. Santiago, Heavy quarks above the top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE].

    ADS  Google Scholar 

  33. J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].

    ADS  Google Scholar 

  34. A. Atre et al., Model-independent searches for new quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987] [INSPIRE].

    Article  ADS  Google Scholar 

  35. B.A. Dobrescu and C.T. Hill, Electroweak symmetry breaking via top condensation seesaw, Phys. Rev. Lett. 81 (1998) 2634 [hep-ph/9712319] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Chivukula, B.A. Dobrescu, H. Georgi and C.T. Hill, Top quark seesaw theory of electroweak symmetry breaking, Phys. Rev. D 59 (1999) 075003 [hep-ph/9809470] [INSPIRE].

    ADS  Google Scholar 

  37. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1133 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  40. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  42. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [INSPIRE].

    Article  Google Scholar 

  45. R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  47. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  48. M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].

    ADS  Google Scholar 

  50. G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, arXiv:1110.1613 [INSPIRE].

  52. S.J. Huber, Flavor violation and warped geometry, Nucl. Phys. B 666 (2003) 269 [hep-ph/0303183] [INSPIRE].

    Article  ADS  Google Scholar 

  53. K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [INSPIRE].

    Article  ADS  Google Scholar 

  54. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

    ADS  Google Scholar 

  55. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M. Blanke, A.J. Buras, B. Duling, S. Gori and A. Weiler, ΔF = 2 observables and fine-tuning in a warped extra dimension with custodial protection, JHEP 03 (2009) 001 [arXiv:0809.1073] [INSPIRE].

    Article  ADS  Google Scholar 

  57. K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].

    ADS  Google Scholar 

  58. O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect kaon CP-violation to constrain the warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [INSPIRE].

    ADS  Google Scholar 

  59. A. Fitzpatrick, G. Perez and L. Randall, Flavor from minimal flavor violation & a viable Randall-Sundrum model, arXiv:0710.1869 [INSPIRE].

  60. J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models, JHEP 12 (2008) 046 [arXiv:0806.1230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. C. Csáki, A. Falkowski and A. Weiler, A simple flavor protection for RS, Phys. Rev. D 80 (2009) 016001 [arXiv:0806.3757] [INSPIRE].

    ADS  Google Scholar 

  62. C. Csáki, G. Perez, Z. Surujon and A. Weiler, Flavor alignment via shining in RS, Phys. Rev. D 81 (2010) 075025 [arXiv:0907.0474] [INSPIRE].

    ADS  Google Scholar 

  63. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline b \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    ADS  Google Scholar 

  64. J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  Google Scholar 

  65. R. Contino and N. Vignaroli, in preparation.

  66. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  67. F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].

    Article  ADS  Google Scholar 

  68. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    Article  ADS  Google Scholar 

  69. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    Article  ADS  Google Scholar 

  70. ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [INSPIRE].

  71. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

    ADS  Google Scholar 

  73. C. Vayonakis, Born helicity amplitudes and cross-sections in nonabelian gauge theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].

    Article  Google Scholar 

  74. B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  75. M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  76. R. Barcelo, A. Carmona, M. Chala, M. Masip and J. Santiago, Single vectorlike quark production at the LHC, Nucl. Phys. B 857 (2012) 172 [arXiv:1110.5914] [INSPIRE].

    Article  ADS  Google Scholar 

  77. R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Contino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bini, C., Contino, R. & Vignaroli, N. Heavy-light decay topologies as a new strategy to discover a heavy gluon. J. High Energ. Phys. 2012, 157 (2012). https://doi.org/10.1007/JHEP01(2012)157

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)157

Keywords

Navigation