Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Supersymmetric Bi-Hamiltonian Systems

15 February 2021

Sylvain Carpentier & Uhi Rinn Suh

Supersymmetry and superstrata in three dimensions

25 August 2021

Anthony Houppe & Nicholas P. Warner

Breaking supersymmetry with pure spinors

19 November 2020

Andrea Legramandi & Alessandro Tomasiello

Exotic Nonlinear Supersymmetry and Integrable Systems

01 July 2020

M. S. Plyushchay

Conformal bridge transformation, PT $$ \mathcal{PT} $$ - and supersymmetry

23 August 2022

Luis Inzunza & Mikhail S. Plyushchay

Stability of BPS states and weak coupling limits

18 August 2021

Eran Palti

A comment on 4d and 5d BPS states

13 January 2020

Shamit Kachru & Max Zimet

D1-D5-P superstrata in 5 and 6 dimensions: separable wave equations and prepotentials

16 September 2019

Robert Walker

Proca theory from the spinning worldline

25 January 2022

Matthias Carosi & Ivo Sachs

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 01 July 2022

Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states

  • Michele Cirafici  ORCID: orcid.org/0000-0002-9940-32503 nAff1 nAff2 &
  • Michele Del Zotto6 nAff4 nAff5 

Journal of High Energy Physics volume 2022, Article number: 5 (2022) Cite this article

  • 84 Accesses

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

It is possible to understand whether a given BPS spectrum is generated by a relevant deformation of a 4D \( \mathcal{N} \) = 2 SCFT or of an asymptotically free theory from the periodicity properties of the corresponding quantum monodromy. With the aim of giving a better understanding of the above conjecture, in this paper we revisit the description of framed BPS states of four-dimensional relativistic quantum field theories with eight conserved supercharges in terms of supersymmetric quantum mechanics. We unveil aspects of the deep interrelationship in between the Seiberg-dualities of the latter, the discrete symmetries of the theory in the bulk, and quantum discrete integrable systems.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB Approximation, arXiv:0907.3987 [INSPIRE].

  2. D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks, Annales Henri Poincaré 14 (2013) 1643 [arXiv:1204.4824] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. D. Gaiotto, G.W. Moore and A. Neitzke, Spectral Networks and Snakes, Annales Henri Poincaré 15 (2014) 61 [arXiv:1209.0866] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. D. Galakhov, P. Longhi, T. Mainiero, G.W. Moore and A. Neitzke, Wild Wall Crossing and BPS Giants, JHEP 11 (2013) 046 [arXiv:1305.5454] [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Maruyoshi, C.Y. Park and W. Yan, BPS spectrum of Argyres-Douglas theory via spectral network, JHEP 12 (2013) 092 [arXiv:1309.3050] [INSPIRE].

    Article  ADS  Google Scholar 

  6. D. Galakhov, P. Longhi and G.W. Moore, Spectral Networks with Spin, Commun. Math. Phys. 340 (2015) 171 [arXiv:1408.0207] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. P. Longhi and C.Y. Park, ADE Spectral Networks, JHEP 08 (2016) 087 [arXiv:1601.02633] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. L. Hollands and A. Neitzke, BPS states in the Minahan-Nemeschansky E6 theory, Commun. Math. Phys. 353 (2017) 317 [arXiv:1607.01743] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  9. P. Longhi, Wall-Crossing Invariants from Spectral Networks, Annales Henri Poincaré 19 (2018) 775 [arXiv:1611.00150] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Longhi and C.Y. Park, ADE Spectral Networks and Decoupling Limits of Surface Defects, JHEP 02 (2017) 011 [arXiv:1611.09409] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE].

  13. S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, Surveys Diff. Geom. 18 (2013) 19 [arXiv:1103.5832] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Cecotti and M. Del Zotto, On Arnold’s 14 ‘exceptional’ N = 2 superconformal gauge theories, JHEP 10 (2011) 099 [arXiv:1107.5747] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi and C. Vafa, BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories, Commun. Math. Phys. 323 (2013) 1185 [arXiv:1109.4941] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. M. Del Zotto, More Arnold’s N = 2 superconformal gauge theories, JHEP 11 (2011) 115 [arXiv:1110.3826] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi and C. Vafa, \( \mathcal{N} \) = 2 quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014) 27 [arXiv:1112.3984] [INSPIRE].

  18. D. Xie, Network, Cluster coordinates and N = 2 theory I, arXiv:1203.4573 [INSPIRE].

  19. S. Cecotti, Categorical Tinkertoys for N = 2 Gauge Theories, Int. J. Mod. Phys. A 28 (2013) 1330006 [arXiv:1203.6734] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. S. Cecotti and M. Del Zotto, Half-Hypers and Quivers, JHEP 09 (2012) 135 [arXiv:1207.2275] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. D. Xie, Network, cluster coordinates and N = 2 theory II: Irregular singularity, arXiv:1207.6112 [INSPIRE].

  22. D. Xie, BPS spectrum, wall crossing and quantum dilogarithm identity, Adv. Theor. Math. Phys. 20 (2016) 405 [arXiv:1211.7071] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  23. W.-y. Chuang, D.-E. Diaconescu, J. Manschot, G.W. Moore and Y. Soibelman, Geometric engineering of (framed) BPS states, Adv. Theor. Math. Phys. 18 (2014) 1063 [arXiv:1301.3065] [INSPIRE].

  24. S. Cecotti, M. Del Zotto and S. Giacomelli, More on the N = 2 superconformal systems of type Dp(G), JHEP 04 (2013) 153 [arXiv:1303.3149] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  25. S. Cecotti and M. Del Zotto, The BPS spectrum of the 4d \( \mathcal{N} \) = 2 SCFT’s H1, H2, D4, E6, E7, E8, JHEP 06 (2013) 075 [arXiv:1304.0614] [INSPIRE].

  26. C. Córdova and S.-H. Shao, An Index Formula for Supersymmetric Quantum Mechanics, arXiv:1406.7853 [INSPIRE].

  27. C. Córdova, Regge trajectories in \( \mathcal{N} \) = 2 supersymmetric Yang-Mills theory, JHEP 09 (2016) 020 [arXiv:1502.02211] [INSPIRE].

  28. S. Cecotti and M. Del Zotto, Galois covers of \( \mathcal{N} \) = 2 BPS spectra and quantum monodromy, Adv. Theor. Math. Phys. 20 (2016) 1227 [arXiv:1503.07485] [INSPIRE].

  29. M. Caorsi and S. Cecotti, Homological S-duality in 4d \( \mathcal{N} \) = 2 QFTs, Adv. Theor. Math. Phys. 22 (2018) 1593 [arXiv:1612.08065] [INSPIRE].

  30. A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions, Phys. Rev. D 90 (2014) 105031 [arXiv:1210.3605] [INSPIRE].

  31. C. Córdova and S.-H. Shao, Schur Indices, BPS Particles, and Argyres-Douglas Theories, JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].

  32. S. Cecotti, J. Song, C. Vafa and W. Yan, Superconformal Index, BPS Monodromy and Chiral Algebras, JHEP 11 (2017) 013 [arXiv:1511.01516] [INSPIRE].

  33. C. Córdova, D. Gaiotto and S.-H. Shao, Infrared Computations of Defect Schur Indices, JHEP 11 (2016) 106 [arXiv:1606.08429] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. C. Córdova, D. Gaiotto and S.-H. Shao, Surface Defect Indices and 2d-4d BPS States, JHEP 12 (2017) 078 [arXiv:1703.02525] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. S. Cecotti and M. Del Zotto, Y systems, Q systems, and 4D \( \mathcal{N} \) = 2 supersymmetric QFT, J. Phys. A 47 (2014) 474001 [arXiv:1403.7613] [INSPIRE].

  37. A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

  38. N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17 (2013) 241 [arXiv:1006.0146] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Witten, Dyons of Charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].

  41. M. Henningson, Wilson-’t Hooft operators and the theta angle, JHEP 05 (2006) 065 [hep-th/0603188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  43. L. Hollands and A. Neitzke, Spectral Networks and Fenchel-Nielsen Coordinates, Lett. Math. Phys. 106 (2016) 811 [arXiv:1312.2979] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. M. Gabella, Quantum Holonomies from Spectral Networks and Framed BPS States, Commun. Math. Phys. 351 (2017) 563 [arXiv:1603.05258] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. D. Xie, Higher laminations, webs and N = 2 line operators, arXiv:1304.2390 [INSPIRE].

  46. D. Gaiotto, Opers and TBA, arXiv:1403.6137 [INSPIRE].

  47. Y. Ito, T. Okuda and M. Taki, Line operators on S1 × ℝ3 and quantization of the Hitchin moduli space, JHEP 04 (2012) 010 [Erratum ibid. 03 (2016) 085] [arXiv:1111.4221] [INSPIRE].

  48. S. Lee and P. Yi, Framed BPS States, Moduli Dynamics, and Wall-Crossing, JHEP 04 (2011) 098 [arXiv:1102.1729] [INSPIRE].

  49. G.W. Moore, A.B. Royston and D. Van den Bleeken, Semiclassical framed BPS states, JHEP 07 (2016) 071 [arXiv:1512.08924] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. G.W. Moore, A.B. Royston and D. Van den Bleeken, L2-Kernels Of Dirac-Type Operators On Monopole Moduli Spaces, Proc. Symp. Pure Math. (2015) 169 [arXiv:1512.08923] [INSPIRE].

  51. G.W. Moore, A.B. Royston and D. Van den Bleeken, Brane bending and monopole moduli, JHEP 10 (2014) 157 [arXiv:1404.7158] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. G.W. Moore, A.B. Royston and D. Van den Bleeken, Parameter counting for singular monopoles on ℝ3, JHEP 10 (2014) 142 [arXiv:1404.5616] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  53. T.D. Brennan and G.W. Moore, A note on the semiclassical formulation of BPS states in four-dimensional N = 2 theories, PTEP 2016 (2016) 12C110 [arXiv:1610.00697] [INSPIRE].

    MATH  Google Scholar 

  54. M. Cirafici, Line defects and (framed) BPS quivers, JHEP 11 (2013) 141 [arXiv:1307.7134] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  55. H. Williams, Toda Systems, Cluster Characters, and Spectral Networks, Commun. Math. Phys. 348 (2016) 145 [arXiv:1411.3692] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. D.G.L. Allegretti and H.K. Kim, A duality map for quantum cluster varieties from surfaces, Adv. Math. 306 (2017) 1164 [arXiv:1509.01567] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  57. T. Okuda, Line operators in supersymmetric gauge theories and the 2d-4d relation, in New Dualities of Supersymmetric Gauge Theories, J. Teschner, ed., (2016) pp. 195–222, DOI [arXiv:1412.7126] [INSPIRE].

  58. C. Córdova and A. Neitzke, Line Defects, Tropicalization, and Multi-Centered Quiver Quantum Mechanics, JHEP 09 (2014) 099 [arXiv:1308.6829] [INSPIRE].

  59. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Wall-crossing from supersymmetric galaxies, JHEP 01 (2012) 115 [arXiv:1008.0030] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Bound state transformation walls, JHEP 03 (2012) 007 [arXiv:1008.3555] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  61. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  62. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  63. E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Del Zotto and A. Sen, About the Absence of Exotics and the Coulomb Branch Formula, Commun. Math. Phys. 357 (2018) 1113 [arXiv:1409.5442] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  65. J. Manschot, B. Pioline and A. Sen, Wall Crossing from Boltzmann Black Hole Halos, JHEP 07 (2011) 059 [arXiv:1011.1258] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  66. J. Manschot, B. Pioline and A. Sen, A fixed point formula for the index of multi-centered N = 2 black holes, JHEP 05 (2011) 057 [arXiv:1103.1887] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  67. A. Sen, Equivalence of three wall-crossing formulae, Commun. Num. Theor. Phys. 6 (2012) 601 [arXiv:1112.2515] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  68. J. Manschot, B. Pioline and A. Sen, From Black Holes to Quivers, JHEP 11 (2012) 023 [arXiv:1207.2230] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  69. J. Manschot, B. Pioline and A. Sen, On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, JHEP 05 (2013) 166 [arXiv:1302.5498] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  70. J. Manschot, B. Pioline and A. Sen, Generalized quiver mutations and single-centered indices, JHEP 01 (2014) 050 [arXiv:1309.7053] [INSPIRE].

    Article  ADS  Google Scholar 

  71. J. Manschot, B. Pioline and A. Sen, The Coulomb Branch Formula for Quiver Moduli Spaces, arXiv:1404.7154 [INSPIRE].

  72. K. Hori, H. Kim and P. Yi, Witten Index and Wall Crossing, JHEP 01 (2015) 124 [arXiv:1407.2567] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  73. H. Kim, S.-J. Lee and P. Yi, Mutation, Witten Index, and Quiver Invariant, JHEP 07 (2015) 093 [arXiv:1504.00068] [INSPIRE].

  74. C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [Addendum ibid. 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].

  75. H. Derksen, J. Wyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math. 14 (2008) 59 [arXiv:0704.0649].

    Article  MathSciNet  MATH  Google Scholar 

  76. S. Cecotti and C. Vafa, BPS Wall Crossing and Topological Strings, arXiv:0910.2615 [INSPIRE].

  77. T. Dimofte and S. Gukov, Refined, Motivic, and Quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. T. Dimofte, S. Gukov and Y. Soibelman, Quantum Wall Crossing in N = 2 Gauge Theories, Lett. Math. Phys. 95 (2011) 1 [arXiv:0912.1346] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  79. B. Keller, Cluster algebras and derived categories, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, Switzerland (2012).

  80. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].

  81. S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, math/0104151.

  82. V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichmuller theory, math/0311149.

  83. L.D. Faddeev, Modular double of quantum group, Math. Phys. Stud. 21 (2000) 149 (2000), pp. 149–156 [math/9912078] [INSPIRE].

  84. L.D. Faddeev, Discrete series of representations for the modular double of U(q)(sl(2, R)), arXiv:0712.2747 [INSPIRE].

  85. L.D. Faddeev and A.Y. Volkov, Discrete evolution for the zero-modes of the Quantum Liouville Model, J. Phys. A 41 (2008) 194008 [arXiv:0803.0230] [INSPIRE].

  86. L.D. Faddeev, Volkov’s Pentagon for the Modular Quantum Dilogarithm, Funct. Anal. Appl. 45 (2011) 291 [arXiv:1201.6464] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  87. S.E. Derkachov and L.D. Faddeev, 3j-symbol for the modular double of SLq(2, ℝ) revisited, J. Phys. Conf. Ser. 532 (2014) 012005 [arXiv:1302.5400] [INSPIRE].

  88. L.D. Faddeev, Modular Double of the Quantum Group SLq(2, R), Springer Proc. Math. Stat. 111 (2014) 21 [INSPIRE].

    MATH  Google Scholar 

  89. L.D. Faddeev, Zero modes for the quantum Liouville model, arXiv:1404.1713 [INSPIRE].

  90. O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  91. M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the Defect Group of a 6D SCFT, Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  92. C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-Group Global Symmetries, JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  93. L. Bhardwaj, 2-Group symmetries in class S, SciPost Phys. 12 (2022) 152 [arXiv:2107.06816] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. F. Apruzzi, L. Bhardwaj, D.S.W. Gould and S. Schäfer-Nameki, 2-Group symmetries and their classification in 6d, SciPost Phys. 12 (2022) 098 [arXiv:2110.14647] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  95. D. Xie, Aspects of line operators of class S theories, arXiv:1312.3371 [INSPIRE].

  96. C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  97. R. Kedem, Q-systems as cluster algebras, J. Phys. A 41 (2008) 194011 [arXiv:0712.2695] [INSPIRE].

  98. P.D. Francesco and R. Kedem, Q-Systems, Heaps, Paths and Cluster Positivity, Commun. Math. Phys. 293 (2010) 727 [arXiv:0811.3027].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  99. A.N. Kirillov and N.Y. Reshetikhin, Representations of yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple lie algebras, J. Sov. Math. 52 (1990) 3156.

    Article  Google Scholar 

  100. M. Cirafici, Quivers, Line Defects and Framed BPS Invariants, Annales Henri Poincaré 19 (2018) 1 [arXiv:1703.06449] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  101. S. Cecotti and M. Del Zotto, Higher S-dualities and Shephard-Todd groups, JHEP 09 (2015) 035 [arXiv:1507.01799] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  102. D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  103. D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  104. E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Author notes
  1. Michele Cirafici

    Present address: Dipartimento di Matematica e Geoscienze, Università di Trieste, Via A. Valerio 12/1, 34127, Trieste, Italy

  2. Michele Cirafici

    Present address: INFN, Sezione di Trieste, and Institute for Geometry and Physics, via Beirut 2, 34136, Trieste, Italy

  3. Michele Del Zotto

    Present address: Mathematics Institute, Uppsala University, Box 480, SE-75106, Uppsala, Sweden

  4. Michele Del Zotto

    Present address: Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden

Authors and Affiliations

  1. CAMGSD, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal

    Michele Cirafici

  2. Simons Center for Geometry and Physics, SUNY, Stony Brook, NY, 11794-3636, USA

    Michele Del Zotto

Authors
  1. Michele Cirafici
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Michele Del Zotto
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michele Cirafici.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1703.04786

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cirafici, M., Del Zotto, M. Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states. J. High Energ. Phys. 2022, 5 (2022). https://doi.org/10.1007/JHEP07(2022)005

Download citation

  • Received: 11 February 2022

  • Accepted: 27 May 2022

  • Published: 01 July 2022

  • DOI: https://doi.org/10.1007/JHEP07(2022)005

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Nonperturbative Effects
  • Supersymmetric Gauge Theory
  • Extended Supersym- metry
  • Wilson, ’t Hooft and Polyakov loops
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.