Abstract
It is possible to understand whether a given BPS spectrum is generated by a relevant deformation of a 4D \( \mathcal{N} \) = 2 SCFT or of an asymptotically free theory from the periodicity properties of the corresponding quantum monodromy. With the aim of giving a better understanding of the above conjecture, in this paper we revisit the description of framed BPS states of four-dimensional relativistic quantum field theories with eight conserved supercharges in terms of supersymmetric quantum mechanics. We unveil aspects of the deep interrelationship in between the Seiberg-dualities of the latter, the discrete symmetries of the theory in the bulk, and quantum discrete integrable systems.
References
D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems, and the WKB Approximation, arXiv:0907.3987 [INSPIRE].
D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks, Annales Henri Poincaré 14 (2013) 1643 [arXiv:1204.4824] [INSPIRE].
D. Gaiotto, G.W. Moore and A. Neitzke, Spectral Networks and Snakes, Annales Henri Poincaré 15 (2014) 61 [arXiv:1209.0866] [INSPIRE].
D. Galakhov, P. Longhi, T. Mainiero, G.W. Moore and A. Neitzke, Wild Wall Crossing and BPS Giants, JHEP 11 (2013) 046 [arXiv:1305.5454] [INSPIRE].
K. Maruyoshi, C.Y. Park and W. Yan, BPS spectrum of Argyres-Douglas theory via spectral network, JHEP 12 (2013) 092 [arXiv:1309.3050] [INSPIRE].
D. Galakhov, P. Longhi and G.W. Moore, Spectral Networks with Spin, Commun. Math. Phys. 340 (2015) 171 [arXiv:1408.0207] [INSPIRE].
P. Longhi and C.Y. Park, ADE Spectral Networks, JHEP 08 (2016) 087 [arXiv:1601.02633] [INSPIRE].
L. Hollands and A. Neitzke, BPS states in the Minahan-Nemeschansky E6 theory, Commun. Math. Phys. 353 (2017) 317 [arXiv:1607.01743] [INSPIRE].
P. Longhi, Wall-Crossing Invariants from Spectral Networks, Annales Henri Poincaré 19 (2018) 775 [arXiv:1611.00150] [INSPIRE].
P. Longhi and C.Y. Park, ADE Spectral Networks and Decoupling Limits of Surface Defects, JHEP 02 (2017) 011 [arXiv:1611.09409] [INSPIRE].
F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].
S. Cecotti, A. Neitzke and C. Vafa, R-Twisting and 4d/2d Correspondences, arXiv:1006.3435 [INSPIRE].
S. Cecotti and C. Vafa, Classification of complete N = 2 supersymmetric theories in 4 dimensions, Surveys Diff. Geom. 18 (2013) 19 [arXiv:1103.5832] [INSPIRE].
S. Cecotti and M. Del Zotto, On Arnold’s 14 ‘exceptional’ N = 2 superconformal gauge theories, JHEP 10 (2011) 099 [arXiv:1107.5747] [INSPIRE].
M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi and C. Vafa, BPS Quivers and Spectra of Complete N = 2 Quantum Field Theories, Commun. Math. Phys. 323 (2013) 1185 [arXiv:1109.4941] [INSPIRE].
M. Del Zotto, More Arnold’s N = 2 superconformal gauge theories, JHEP 11 (2011) 115 [arXiv:1110.3826] [INSPIRE].
M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi and C. Vafa, \( \mathcal{N} \) = 2 quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014) 27 [arXiv:1112.3984] [INSPIRE].
D. Xie, Network, Cluster coordinates and N = 2 theory I, arXiv:1203.4573 [INSPIRE].
S. Cecotti, Categorical Tinkertoys for N = 2 Gauge Theories, Int. J. Mod. Phys. A 28 (2013) 1330006 [arXiv:1203.6734] [INSPIRE].
S. Cecotti and M. Del Zotto, Half-Hypers and Quivers, JHEP 09 (2012) 135 [arXiv:1207.2275] [INSPIRE].
D. Xie, Network, cluster coordinates and N = 2 theory II: Irregular singularity, arXiv:1207.6112 [INSPIRE].
D. Xie, BPS spectrum, wall crossing and quantum dilogarithm identity, Adv. Theor. Math. Phys. 20 (2016) 405 [arXiv:1211.7071] [INSPIRE].
W.-y. Chuang, D.-E. Diaconescu, J. Manschot, G.W. Moore and Y. Soibelman, Geometric engineering of (framed) BPS states, Adv. Theor. Math. Phys. 18 (2014) 1063 [arXiv:1301.3065] [INSPIRE].
S. Cecotti, M. Del Zotto and S. Giacomelli, More on the N = 2 superconformal systems of type Dp(G), JHEP 04 (2013) 153 [arXiv:1303.3149] [INSPIRE].
S. Cecotti and M. Del Zotto, The BPS spectrum of the 4d \( \mathcal{N} \) = 2 SCFT’s H1, H2, D4, E6, E7, E8, JHEP 06 (2013) 075 [arXiv:1304.0614] [INSPIRE].
C. Córdova and S.-H. Shao, An Index Formula for Supersymmetric Quantum Mechanics, arXiv:1406.7853 [INSPIRE].
C. Córdova, Regge trajectories in \( \mathcal{N} \) = 2 supersymmetric Yang-Mills theory, JHEP 09 (2016) 020 [arXiv:1502.02211] [INSPIRE].
S. Cecotti and M. Del Zotto, Galois covers of \( \mathcal{N} \) = 2 BPS spectra and quantum monodromy, Adv. Theor. Math. Phys. 20 (2016) 1227 [arXiv:1503.07485] [INSPIRE].
M. Caorsi and S. Cecotti, Homological S-duality in 4d \( \mathcal{N} \) = 2 QFTs, Adv. Theor. Math. Phys. 22 (2018) 1593 [arXiv:1612.08065] [INSPIRE].
A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions, Phys. Rev. D 90 (2014) 105031 [arXiv:1210.3605] [INSPIRE].
C. Córdova and S.-H. Shao, Schur Indices, BPS Particles, and Argyres-Douglas Theories, JHEP 01 (2016) 040 [arXiv:1506.00265] [INSPIRE].
S. Cecotti, J. Song, C. Vafa and W. Yan, Superconformal Index, BPS Monodromy and Chiral Algebras, JHEP 11 (2017) 013 [arXiv:1511.01516] [INSPIRE].
C. Córdova, D. Gaiotto and S.-H. Shao, Infrared Computations of Defect Schur Indices, JHEP 11 (2016) 106 [arXiv:1606.08429] [INSPIRE].
C. Córdova, D. Gaiotto and S.-H. Shao, Surface Defect Indices and 2d-4d BPS States, JHEP 12 (2017) 078 [arXiv:1703.02525] [INSPIRE].
C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].
S. Cecotti and M. Del Zotto, Y systems, Q systems, and 4D \( \mathcal{N} \) = 2 supersymmetric QFT, J. Phys. A 47 (2014) 474001 [arXiv:1403.7613] [INSPIRE].
A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].
N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [INSPIRE].
D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17 (2013) 241 [arXiv:1006.0146] [INSPIRE].
E. Witten, Dyons of Charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].
M. Henningson, Wilson-’t Hooft operators and the theta angle, JHEP 05 (2006) 065 [hep-th/0603188] [INSPIRE].
D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].
L. Hollands and A. Neitzke, Spectral Networks and Fenchel-Nielsen Coordinates, Lett. Math. Phys. 106 (2016) 811 [arXiv:1312.2979] [INSPIRE].
M. Gabella, Quantum Holonomies from Spectral Networks and Framed BPS States, Commun. Math. Phys. 351 (2017) 563 [arXiv:1603.05258] [INSPIRE].
D. Xie, Higher laminations, webs and N = 2 line operators, arXiv:1304.2390 [INSPIRE].
D. Gaiotto, Opers and TBA, arXiv:1403.6137 [INSPIRE].
Y. Ito, T. Okuda and M. Taki, Line operators on S1 × ℝ3 and quantization of the Hitchin moduli space, JHEP 04 (2012) 010 [Erratum ibid. 03 (2016) 085] [arXiv:1111.4221] [INSPIRE].
S. Lee and P. Yi, Framed BPS States, Moduli Dynamics, and Wall-Crossing, JHEP 04 (2011) 098 [arXiv:1102.1729] [INSPIRE].
G.W. Moore, A.B. Royston and D. Van den Bleeken, Semiclassical framed BPS states, JHEP 07 (2016) 071 [arXiv:1512.08924] [INSPIRE].
G.W. Moore, A.B. Royston and D. Van den Bleeken, L2-Kernels Of Dirac-Type Operators On Monopole Moduli Spaces, Proc. Symp. Pure Math. (2015) 169 [arXiv:1512.08923] [INSPIRE].
G.W. Moore, A.B. Royston and D. Van den Bleeken, Brane bending and monopole moduli, JHEP 10 (2014) 157 [arXiv:1404.7158] [INSPIRE].
G.W. Moore, A.B. Royston and D. Van den Bleeken, Parameter counting for singular monopoles on ℝ3, JHEP 10 (2014) 142 [arXiv:1404.5616] [INSPIRE].
T.D. Brennan and G.W. Moore, A note on the semiclassical formulation of BPS states in four-dimensional N = 2 theories, PTEP 2016 (2016) 12C110 [arXiv:1610.00697] [INSPIRE].
M. Cirafici, Line defects and (framed) BPS quivers, JHEP 11 (2013) 141 [arXiv:1307.7134] [INSPIRE].
H. Williams, Toda Systems, Cluster Characters, and Spectral Networks, Commun. Math. Phys. 348 (2016) 145 [arXiv:1411.3692] [INSPIRE].
D.G.L. Allegretti and H.K. Kim, A duality map for quantum cluster varieties from surfaces, Adv. Math. 306 (2017) 1164 [arXiv:1509.01567] [INSPIRE].
T. Okuda, Line operators in supersymmetric gauge theories and the 2d-4d relation, in New Dualities of Supersymmetric Gauge Theories, J. Teschner, ed., (2016) pp. 195–222, DOI [arXiv:1412.7126] [INSPIRE].
C. Córdova and A. Neitzke, Line Defects, Tropicalization, and Multi-Centered Quiver Quantum Mechanics, JHEP 09 (2014) 099 [arXiv:1308.6829] [INSPIRE].
E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Wall-crossing from supersymmetric galaxies, JHEP 01 (2012) 115 [arXiv:1008.0030] [INSPIRE].
E. Andriyash, F. Denef, D.L. Jafferis and G.W. Moore, Bound state transformation walls, JHEP 03 (2012) 007 [arXiv:1008.3555] [INSPIRE].
N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. 430 (1994) 485] [hep-th/9407087] [INSPIRE].
N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].
M. Del Zotto and A. Sen, About the Absence of Exotics and the Coulomb Branch Formula, Commun. Math. Phys. 357 (2018) 1113 [arXiv:1409.5442] [INSPIRE].
J. Manschot, B. Pioline and A. Sen, Wall Crossing from Boltzmann Black Hole Halos, JHEP 07 (2011) 059 [arXiv:1011.1258] [INSPIRE].
J. Manschot, B. Pioline and A. Sen, A fixed point formula for the index of multi-centered N = 2 black holes, JHEP 05 (2011) 057 [arXiv:1103.1887] [INSPIRE].
A. Sen, Equivalence of three wall-crossing formulae, Commun. Num. Theor. Phys. 6 (2012) 601 [arXiv:1112.2515] [INSPIRE].
J. Manschot, B. Pioline and A. Sen, From Black Holes to Quivers, JHEP 11 (2012) 023 [arXiv:1207.2230] [INSPIRE].
J. Manschot, B. Pioline and A. Sen, On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, JHEP 05 (2013) 166 [arXiv:1302.5498] [INSPIRE].
J. Manschot, B. Pioline and A. Sen, Generalized quiver mutations and single-centered indices, JHEP 01 (2014) 050 [arXiv:1309.7053] [INSPIRE].
J. Manschot, B. Pioline and A. Sen, The Coulomb Branch Formula for Quiver Moduli Spaces, arXiv:1404.7154 [INSPIRE].
K. Hori, H. Kim and P. Yi, Witten Index and Wall Crossing, JHEP 01 (2015) 124 [arXiv:1407.2567] [INSPIRE].
H. Kim, S.-J. Lee and P. Yi, Mutation, Witten Index, and Quiver Invariant, JHEP 07 (2015) 093 [arXiv:1504.00068] [INSPIRE].
C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [Addendum ibid. 04 (2016) 094] [arXiv:1406.6793] [INSPIRE].
H. Derksen, J. Wyman and A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math. 14 (2008) 59 [arXiv:0704.0649].
S. Cecotti and C. Vafa, BPS Wall Crossing and Topological Strings, arXiv:0910.2615 [INSPIRE].
T. Dimofte and S. Gukov, Refined, Motivic, and Quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [INSPIRE].
T. Dimofte, S. Gukov and Y. Soibelman, Quantum Wall Crossing in N = 2 Gauge Theories, Lett. Math. Phys. 95 (2011) 1 [arXiv:0912.1346] [INSPIRE].
B. Keller, Cluster algebras and derived categories, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, Switzerland (2012).
M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].
S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, math/0104151.
V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichmuller theory, math/0311149.
L.D. Faddeev, Modular double of quantum group, Math. Phys. Stud. 21 (2000) 149 (2000), pp. 149–156 [math/9912078] [INSPIRE].
L.D. Faddeev, Discrete series of representations for the modular double of U(q)(sl(2, R)), arXiv:0712.2747 [INSPIRE].
L.D. Faddeev and A.Y. Volkov, Discrete evolution for the zero-modes of the Quantum Liouville Model, J. Phys. A 41 (2008) 194008 [arXiv:0803.0230] [INSPIRE].
L.D. Faddeev, Volkov’s Pentagon for the Modular Quantum Dilogarithm, Funct. Anal. Appl. 45 (2011) 291 [arXiv:1201.6464] [INSPIRE].
S.E. Derkachov and L.D. Faddeev, 3j-symbol for the modular double of SLq(2, ℝ) revisited, J. Phys. Conf. Ser. 532 (2014) 012005 [arXiv:1302.5400] [INSPIRE].
L.D. Faddeev, Modular Double of the Quantum Group SLq(2, R), Springer Proc. Math. Stat. 111 (2014) 21 [INSPIRE].
L.D. Faddeev, Zero modes for the quantum Liouville model, arXiv:1404.1713 [INSPIRE].
O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].
M. Del Zotto, J.J. Heckman, D.S. Park and T. Rudelius, On the Defect Group of a 6D SCFT, Lett. Math. Phys. 106 (2016) 765 [arXiv:1503.04806] [INSPIRE].
C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-Group Global Symmetries, JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].
L. Bhardwaj, 2-Group symmetries in class S, SciPost Phys. 12 (2022) 152 [arXiv:2107.06816] [INSPIRE].
F. Apruzzi, L. Bhardwaj, D.S.W. Gould and S. Schäfer-Nameki, 2-Group symmetries and their classification in 6d, SciPost Phys. 12 (2022) 098 [arXiv:2110.14647] [INSPIRE].
D. Xie, Aspects of line operators of class S theories, arXiv:1312.3371 [INSPIRE].
C. Vafa and E. Witten, A strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].
R. Kedem, Q-systems as cluster algebras, J. Phys. A 41 (2008) 194011 [arXiv:0712.2695] [INSPIRE].
P.D. Francesco and R. Kedem, Q-Systems, Heaps, Paths and Cluster Positivity, Commun. Math. Phys. 293 (2010) 727 [arXiv:0811.3027].
A.N. Kirillov and N.Y. Reshetikhin, Representations of yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple lie algebras, J. Sov. Math. 52 (1990) 3156.
M. Cirafici, Quivers, Line Defects and Framed BPS Invariants, Annales Henri Poincaré 19 (2018) 1 [arXiv:1703.06449] [INSPIRE].
S. Cecotti and M. Del Zotto, Higher S-dualities and Shephard-Todd groups, JHEP 09 (2015) 035 [arXiv:1507.01799] [INSPIRE].
D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1703.04786
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Cirafici, M., Del Zotto, M. Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS states. J. High Energ. Phys. 2022, 5 (2022). https://doi.org/10.1007/JHEP07(2022)005
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2022)005
Keywords
- Nonperturbative Effects
- Supersymmetric Gauge Theory
- Extended Supersym- metry
- Wilson, ’t Hooft and Polyakov loops