Skip to main content

Advertisement

SpringerLink
Jet angularities in Z+jet production at the LHC
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 13 July 2021

Jet angularities in Z+jet production at the LHC

  • Simone Caletti1,
  • Oleh Fedkevych1,
  • Simone Marzani1,
  • Daniel Reichelt2,
  • Steffen Schumann  ORCID: orcid.org/0000-0003-0330-39902,
  • Gregory Soyez3 &
  • …
  • Vincent Theeuwes2,3 

Journal of High Energy Physics volume 2021, Article number: 76 (2021) Cite this article

  • 132 Accesses

  • 12 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We present a phenomenological study of angularities measured on the highest transverse-momentum jet in LHC events that feature the associate production of a Z boson and one or more jets. In particular, we study angularity distributions that are measured on jets with and without the SoftDrop grooming procedure. We begin our analysis exploiting state-of-the-art Monte Carlo parton shower simulations and we quantitatively assess the impact of next-to-leading order (NLO) matching and merging procedures. We then move to analytic resummation and arrive at an all-order expression that features the resummation of large logarithms at next-to-leading logarithmic accuracy (NLL) and is matched to the exact NLO result. Our predictions include the effect of soft emissions at large angles, treated as a power expansion in the jet radius, and non-global logarithms. Furthermore, matching to fixed-order is performed in such a way to ensure what is usually referred to as NLL′ accuracy. Our results account for realistic experimental cuts and can be easily compared to upcoming measurements of jet angularities from the LHC collaborations.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. A.J. Larkoski, I. Moult and B. Nachman, Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Butter et al., The Machine Learning landscape of top taggers, SciPost Phys. 7 (2019) 014 [arXiv:1902.09914] [INSPIRE].

    Article  ADS  Google Scholar 

  3. L. Benato, P.L.S. Connor, G. Kasieczka, D. Krücker and M. Meyer, Teaching machine learning with an application in collider particle physics, 2020 JINST 15 C09011 [INSPIRE].

  4. D. Britzger, K. Rabbertz, D. Savoiu, G. Sieber and M. Wobisch, Determination of the strong coupling constant using inclusive jet cross section data from multiple experiments, Eur. Phys. J. C 79 (2019) 68 [arXiv:1712.00480] [INSPIRE].

    Article  ADS  Google Scholar 

  5. CMS collaboration, Measurement of the Ratio of the Inclusive 3-Jet Cross Section to the Inclusive 2-Jet Cross Section in pp Collisions at \( \sqrt{s} \) = 7 TeV and First Determination of the Strong Coupling Constant in the TeV Range, Eur. Phys. J. C 73 (2013) 2604 [arXiv:1304.7498] [INSPIRE].

  6. ATLAS collaboration, Determination of the strong coupling constant αs from transverse energy-energy correlations in multijet events at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Eur. Phys. J. C 77 (2017) 872 [arXiv:1707.02562] [INSPIRE].

  7. ATLAS collaboration, Measurement of transverse energy-energy correlations in multi-jet events in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector and determination of the strong coupling constant αs(mZ), Phys. Lett. B 750 (2015) 427 [arXiv:1508.01579] [INSPIRE].

  8. CMS collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 75 (2015) 186 [arXiv:1412.1633] [INSPIRE].

  9. ATLAS collaboration, Determination of the parton distribution functions of the proton from ATLAS measurements of differential W± and Z boson production in association with jets, arXiv:2101.05095 [INSPIRE].

  10. ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{\left.s\right)} \) = 2.76 TeV and comparison to the inclusive jet cross section at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2509 [arXiv:1304.4739] [INSPIRE].

  11. CMS collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 75 (2015) 288 [arXiv:1410.6765] [INSPIRE].

  12. CMS collaboration, Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV and cross section ratios to 2.76 and 7 TeV, JHEP 03 (2017) 156 [arXiv:1609.05331] [INSPIRE].

  13. R. Abdul Khalek et al., Phenomenology of NNLO jet production at the LHC and its impact on parton distributions, Eur. Phys. J. C 80 (2020) 797 [arXiv:2005.11327] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L.A. Harland-Lang, A.D. Martin and R.S. Thorne, The Impact of LHC Jet Data on the MMHT PDF Fit at NNLO, Eur. Phys. J. C 78 (2018) 248 [arXiv:1711.05757] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Pumplin, J. Huston, H.L. Lai, P.M. Nadolsky, W.-K. Tung and C.P. Yuan, Collider Inclusive Jet Data and the Gluon Distribution, Phys. Rev. D 80 (2009) 014019 [arXiv:0904.2424] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B.J.A. Watt, P. Motylinski and R.S. Thorne, The Effect of LHC Jet Data on MSTW PDFs, Eur. Phys. J. C 74 (2014) 2934 [arXiv:1311.5703] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

  18. M. Dasgupta and G.P. Salam, Accounting for coherence in interjet Et flow: A case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].

  19. M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, Eur. Phys. J. C 73 (2013) 2623 [arXiv:1307.0013] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Dasgupta, L. Schunk and G. Soyez, Jet shapes for boosted jet two-prong decays from first-principles, JHEP 04 (2016) 166 [arXiv:1512.00516] [INSPIRE].

    ADS  Google Scholar 

  23. G.P. Salam, L. Schunk and G. Soyez, Dichroic subjettiness ratios to distinguish colour flows in boosted boson tagging, JHEP 03 (2017) 022 [arXiv:1612.03917] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Dasgupta, A. Powling, L. Schunk and G. Soyez, Improved jet substructure methods: Y-splitter and variants with grooming, JHEP 12 (2016) 079 [arXiv:1609.07149] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Dasgupta, A. Powling and A. Siodmok, On jet substructure methods for signal jets, JHEP 08 (2015) 079 [arXiv:1503.01088] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A.J. Larkoski, I. Moult and D. Neill, Power Counting to Better Jet Observables, JHEP 12 (2014) 009 [arXiv:1409.6298] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A.J. Larkoski, I. Moult and D. Neill, Analytic Boosted Boson Discrimination, JHEP 05 (2016) 117 [arXiv:1507.03018] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A.J. Larkoski, Improving the understanding of jet grooming in perturbation theory, JHEP 09 (2020) 072 [arXiv:2006.14680] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A.J. Larkoski, G.P. Salam and J. Thaler, Energy Correlation Functions for Jet Substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Z.-B. Kang, K. Lee, X. Liu, D. Neill and F. Ringer, The soft drop groomed jet radius at NLL, JHEP 02 (2020) 054 [arXiv:1908.01783] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. Cal, D. Neill, F. Ringer and W.J. Waalewijn, Calculating the angle between jet axes, JHEP 04 (2020) 211 [arXiv:1911.06840] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Cal, K. Lee, F. Ringer and W.J. Waalewijn, Jet energy drop, JHEP 11 (2020) 012 [arXiv:2007.12187] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, Lect. Notes Phys. 958 (2019) [arXiv:1901.10342] [INSPIRE].

  34. A.J. Larkoski, J. Thaler and W.J. Waalewijn, Gaining (Mutual) Information about Quark/Gluon Discrimination, JHEP 11 (2014) 129 [arXiv:1408.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders, (2016) [arXiv:1605.04692] [INSPIRE].

  36. P. Gras et al., Systematics of quark/gluon tagging, JHEP 07 (2017) 091 [arXiv:1704.03878] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Amoroso et al., Les Houches 2019: Physics at TeV Colliders: Standard Model Working Group Report, in 11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches, (2020) [arXiv:2003.01700] [INSPIRE].

  38. J.R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, in 10th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches, (2018) arXiv:1803.07977 [INSPIRE].

  39. E. Gerwick, S. Hoeche, S. Marzani and S. Schumann, Soft evolution of multi-jet final states, JHEP 02 (2015) 106 [arXiv:1411.7325] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Hornig, Y. Makris and T. Mehen, Jet Shapes in Dijet Events at the LHC in SCET, JHEP 04 (2016) 097 [arXiv:1601.01319] [INSPIRE].

    ADS  Google Scholar 

  42. Z.-B. Kang, K. Lee and F. Ringer, Jet angularity measurements for single inclusive jet production, JHEP 04 (2018) 110 [arXiv:1801.00790] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Z.-B. Kang, K. Lee, X. Liu and F. Ringer, Soft drop groomed jet angularities at the LHC, Phys. Lett. B 793 (2019) 41 [arXiv:1811.06983] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

  46. L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-pT Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

  48. A.J. Larkoski, D. Neill and J. Thaler, Jet Shapes with the Broadening Axis, JHEP 04 (2014) 017 [arXiv:1401.2158] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].

    Article  ADS  Google Scholar 

  50. CMS collaboration, Study of quark and gluon jet substructure in dijet and Z+jet events from pp collisions, Tech. Rep. CMS-PAS-SMP-20-010, CERN, Geneva (2021).

  51. M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [INSPIRE].

    Article  ADS  Google Scholar 

  52. A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].

    Article  ADS  Google Scholar 

  53. J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

  54. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    Article  ADS  Google Scholar 

  55. R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].

    Article  ADS  Google Scholar 

  56. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  57. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

  60. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Hoeche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    Article  ADS  Google Scholar 

  62. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  63. Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].

  64. NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  65. S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    Article  ADS  Google Scholar 

  66. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J.M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    Article  ADS  Google Scholar 

  70. S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

  71. E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, The \( t\overline{t} \) cross-section at 1.8-TeV and 1.96-TeV: A study of the systematics due to parton densities and scale dependence, JHEP 04 (2004) 068 [hep-ph/0303085] [INSPIRE].

  73. J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J. C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].

  74. T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].

    Article  ADS  Google Scholar 

  75. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  76. J. Bellm et al., HERWIG 7.2 release note, Eur. Phys. J. C 80 (2020) 452 [arXiv:1912.06509] [INSPIRE].

  77. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  78. S. Plätzer and S. Gieseke, Dipole Showers and Automated NLO Matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].

    Article  ADS  Google Scholar 

  79. J. Bellm, S. Gieseke and S. Plätzer, Merging NLO Multi-jet Calculations with Improved Unitarization, Eur. Phys. J. C 78 (2018) 244 [arXiv:1705.06700] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  81. C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3, SciPost Phys. 8 (2020) 026 [arXiv:1912.05451] [INSPIRE].

    Article  ADS  Google Scholar 

  82. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  83. CMS collaboration, Measurements of the differential jet cross section as a function of the jet mass in dijet events from proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 11 (2018) 113 [arXiv:1807.05974] [INSPIRE].

  84. S. Marzani, D. Reichelt, S. Schumann, G. Soyez and V. Theeuwes, Fitting the Strong Coupling Constant with Soft-Drop Thrust, JHEP 11 (2019) 179 [arXiv:1906.10504] [INSPIRE].

    Article  ADS  Google Scholar 

  85. N. Baberuxki, C.T. Preuss, D. Reichelt and S. Schumann, Resummed predictions for jet-resolution scales in multijet production in e+e− annihilation, JHEP 04 (2020) 112 [arXiv:1912.09396] [INSPIRE].

    Article  ADS  Google Scholar 

  86. J. Baron, D. Reichelt, S. Schumann, N. Schwanemann and V. Theeuwes, Soft-drop grooming for hadronic event shapes, arXiv:2012.09574 [INSPIRE].

  87. T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    Article  ADS  Google Scholar 

  88. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

    Article  ADS  Google Scholar 

  89. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  90. M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].

    Article  ADS  Google Scholar 

  91. M. Dasgupta, F.A. Dreyer, K. Hamilton, P.F. Monni, G.P. Salam and G. Soyez, Parton showers beyond leading logarithmic accuracy, Phys. Rev. Lett. 125 (2020) 052002 [arXiv:2002.11114] [INSPIRE].

    Article  ADS  Google Scholar 

  92. A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with kt clustering, Phys. Lett. B 628 (2005) 49 [hep-ph/0508159] [INSPIRE].

  93. Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with kt clustering, JHEP 12 (2006) 044 [hep-ph/0610242] [INSPIRE].

  94. A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  95. Y. Delenda and K. Khelifa-Kerfa, On the resummation of clustering logarithms for non-global observables, JHEP 09 (2012) 109 [arXiv:1207.4528] [INSPIRE].

    Article  ADS  Google Scholar 

  96. A. Lifson, G.P. Salam and G. Soyez, Calculating the primary Lund Jet Plane density, JHEP 10 (2020) 170 [arXiv:2007.06578] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  97. A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].

  98. C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].

    Article  ADS  Google Scholar 

  99. S. Höche, D. Reichelt and F. Siegert, Momentum conservation and unitarity in parton showers and NLL resummation, JHEP 01 (2018) 118 [arXiv:1711.03497] [INSPIRE].

    Article  ADS  Google Scholar 

  100. C.F. Berger, T. Kucs and G.F. Sterman, Interjet energy flow/event shape correlations, Int. J. Mod. Phys. A 18 (2003) 4159 [hep-ph/0212343] [INSPIRE].

  101. ATLAS collaboration, Light-quark and gluon jet discrimination in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3023 [arXiv:1405.6583] [INSPIRE].

  102. M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].

    Article  ADS  Google Scholar 

  103. S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].

    Article  ADS  Google Scholar 

  104. T. Sjöstrand, Multiple Parton-Parton Interactions in Hadronic Events, in Proceedings, 23RD International Conference on High Energy Physics, JULY 16–23, 1986, Berkeley, CA, (1985).

  105. T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [INSPIRE].

  106. M. Bähr, S. Gieseke and M.H. Seymour, Simulation of multiple partonic interactions in HERWIG++, JHEP 07 (2008) 076 [arXiv:0803.3633] [INSPIRE].

    Article  ADS  Google Scholar 

  107. S. Gieseke, F. Loshaj and P. Kirchgaeßer, Soft and diffractive scattering with the cluster model in HERWIG, Eur. Phys. J. C 77 (2017) 156 [arXiv:1612.04701] [INSPIRE].

    Article  ADS  Google Scholar 

  108. B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].

    Article  ADS  Google Scholar 

  109. T. Sjöstrand, Jet Fragmentation of Nearby Partons, Nucl. Phys. B 248 (1984) 469 [INSPIRE].

    Article  ADS  Google Scholar 

  110. B.R. Webber, A QCD Model for Jet Fragmentation Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 492 [INSPIRE].

    Article  ADS  Google Scholar 

  111. A. Kupco, Cluster hadronization in HERWIG 5.9, in Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting Meeting), (1998) [hep-ph/9906412] [INSPIRE].

  112. C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Precision physics with pile-up insensitive observables, arXiv:1603.06375 [INSPIRE].

  113. H.B. Hartanto, S. Badger, C. Brønnum-Hansen and T. Peraro, A numerical evaluation of planar two-loop helicity amplitudes for a W-boson plus four partons, JHEP 09 (2019) 119 [arXiv:1906.11862] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  114. S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, Two-Loop Integrals for Planar Five-Point One-Mass Processes, JHEP 11 (2020) 117 [arXiv:2005.04195] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  115. D.D. Canko, C.G. Papadopoulos and N. Syrrakos, Analytic representation of all planar two-loop five-point Master Integrals with one off-shell leg, JHEP 01 (2021) 199 [arXiv:2009.13917] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  116. S. Badger, H.B. Hartanto and S. Zoia, Two-loop QCD corrections to \( Wb\overline{b} \) production at hadron colliders, Phys. Rev. Lett. 127 (2021) 012001 [arXiv:2102.02516] [INSPIRE].

    Article  ADS  Google Scholar 

  117. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  118. F.A. Dreyer, L. Necib, G. Soyez and J. Thaler, Recursive Soft Drop, JHEP 06 (2018) 093 [arXiv:1804.03657] [INSPIRE].

    Article  ADS  Google Scholar 

  119. A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative Corrections to Soft Drop Jet Mass, JHEP 12 (2019) 002 [arXiv:1906.11843] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  120. A. Pathak, I.W. Stewart, V. Vaidya and L. Zoppi, EFT for Soft Drop Double Differential Cross Section, JHEP 04 (2021) 032 [arXiv:2012.15568] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. J.D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9 (2007) 90 [INSPIRE].

    Article  Google Scholar 

  122. T. Oliphant, Guide to NumPy, Trelgol Publishing, (2006).

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Via Dodecaneso 33, 16146, Genoa, Italy

    Simone Caletti, Oleh Fedkevych & Simone Marzani

  2. Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany

    Daniel Reichelt, Steffen Schumann & Vincent Theeuwes

  3. Institut de Physique Théorique, Paris Saclay University, CEA, CNRS, F-91191, Gif-sur-Yvette, France

    Gregory Soyez & Vincent Theeuwes

Authors
  1. Simone Caletti
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Oleh Fedkevych
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Simone Marzani
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Daniel Reichelt
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Steffen Schumann
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Gregory Soyez
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Vincent Theeuwes
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Steffen Schumann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2104.06920

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caletti, S., Fedkevych, O., Marzani, S. et al. Jet angularities in Z+jet production at the LHC. J. High Energ. Phys. 2021, 76 (2021). https://doi.org/10.1007/JHEP07(2021)076

Download citation

  • Received: 21 April 2021

  • Accepted: 19 June 2021

  • Published: 13 July 2021

  • DOI: https://doi.org/10.1007/JHEP07(2021)076

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets
  • NLO Computations
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.