Skip to main content
Log in

On the resummation of clustering logarithms for non-global observables

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Clustering logs have been the subject of much study in recent literature. They are a class of large logs which arise for non-global jet-shape observables where final-state particles are clustered by a non-cone-like jet algorithm. Their resummation to all orders is highly non-trivial due to the role of clustering amongst soft gluons which results in the phase-space being non-factorisable. This may therefore significantly impact the accuracy of analytical estimations of many of such observables. Nonetheless, in this paper we address this very issue for jet shapes defined using the k t and C/A algorithms, taking the jet mass as our explicit example. We calculate the coefficients of the Abelian \(\alpha_s^2{L^2},\alpha_s^3{L^3}\) and \(\alpha_s^4{L^4}\) NLL terms in the exponent of the resummed distribution and show that the impact of these logs is small which gives confidence on the perturbative estimate without the neglected higher-order terms. Furthermore we numerically resum the non-global logs of the jet mass distribution in the k t algorithm in the large-N c limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].

    ADS  Google Scholar 

  2. R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  3. S. Bethke, α s 2002, Nucl. Phys. Proc. Suppl. 121 (2003) 74 [hep-ex/0211012] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Beneke, Renormalons, Phys. Rept. 317 (1999) 1 [hep-ph/9807443] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].

    Article  ADS  Google Scholar 

  6. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].

    ADS  Google Scholar 

  8. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  10. W. Skiba and D. Tucker-Smith, Using jet mass to discover vector quarks at the LHC, Phys. Rev. D 75 (2007) 115010 [hep-ph/0701247] [INSPIRE].

    ADS  Google Scholar 

  11. L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].

    ADS  Google Scholar 

  13. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs boson in new physics events using jet substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [INSPIRE].

    ADS  Google Scholar 

  14. S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Banfi, G. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

    ADS  Google Scholar 

  20. M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: a case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Appleby and M. Seymour, Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426] [INSPIRE].

    Article  ADS  Google Scholar 

  22. Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with k t clustering, JHEP 12 (2006) 044 [hep-ph/0610242] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Khelifa-Kerfa, Non-global logs and clustering impact on jet mass with a jet veto distribution, JHEP 02 (2012) 072 [arXiv:1111.2016] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Kelley, J.R. Walsh and S. Zuberi, Abelian non-global logarithms from soft gluon clustering, arXiv:1202.2361 [INSPIRE].

  26. R. Kelley, J.R. Walsh and S. Zuberi, Disentangling clustering effects in jet algorithms, arXiv:1203.2923 [INSPIRE].

  27. A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with k t clustering, Phys. Lett. B 628 (2005) 49 [hep-ph/0508159] [INSPIRE].

    ADS  Google Scholar 

  28. A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-p T jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Dokshitzer and G. Marchesini, On large angle multiple gluon radiation, JHEP 03 (2003) 040 [hep-ph/0303101] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant k t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  31. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  32. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX() in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  33. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  34. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  35. Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

  37. S.D. Ellis, A. Hornig, C. Lee, C.K. Vermilion and J.R. Walsh, Consistent factorization of jet observables in exclusive multijet cross-sections, Phys. Lett. B 689 (2010) 82 [arXiv:0912.0262] [INSPIRE].

    ADS  Google Scholar 

  38. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Hornig, C. Lee, J.R. Walsh and S. Zuberi, Double non-global logarithms in-N-out of jets, JHEP 01 (2012) 149 [arXiv:1110.0004] [INSPIRE].

    Article  ADS  Google Scholar 

  41. K. Khelifa-Kerfa and Y. Delenda, Jet mass at hadron colliders in the k T algorithm, in preparation.

  42. M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z + jet and dijet processes at the LHC, arXiv:1207.1640 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Khelifa-Kerfa.

Additional information

ArXiv ePrint: 1207.4528

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delenda, Y., Khelifa-Kerfa, K. On the resummation of clustering logarithms for non-global observables. J. High Energ. Phys. 2012, 109 (2012). https://doi.org/10.1007/JHEP09(2012)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)109

Keywords

Navigation