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Abstract: We present a phenomenological study of angularities measured on the highest
transverse-momentum jet in LHC events that feature the associate production of a Z boson
and one or more jets. In particular, we study angularity distributions that are measured on
jets with and without the SoftDrop grooming procedure. We begin our analysis exploiting
state-of-the-art Monte Carlo parton shower simulations and we quantitatively assess the
impact of next-to-leading order (NLO) matching and merging procedures. We then move to
analytic resummation and arrive at an all-order expression that features the resummation
of large logarithms at next-to-leading logarithmic accuracy (NLL) and is matched to the
exact NLO result. Our predictions include the effect of soft emissions at large angles,
treated as a power expansion in the jet radius, and non-global logarithms. Furthermore,
matching to fixed-order is performed in such a way to ensure what is usually referred to
as NLL′ accuracy. Our results account for realistic experimental cuts and can be easily
compared to upcoming measurements of jet angularities from the LHC collaborations.
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1 Introduction

During the first two runs of the CERN Large Hadron Collider (LHC) the experimental
collaborations have accumulated a vast amount of high-quality data of proton-proton col-
lisions at energies as high as 13TeV. In the current shutdown period, the collaborations
refine their search and measurement strategies, in order to fully exploit the physics poten-
tial of the acquired data, and to prepare for the upcoming third run of the LHC. However,
no significant increase in collision energy is planned for the foreseeable future. Accordingly,
the focus of the theory and experimental communities should be on devising new effective
and robust analysis techniques to interrogate the data, so that no stone is left unturned. In
this context, the use of deep-learning algorithms to augment performance is now becoming
standard practice (see e.g. [1–3] for recent reviews). Complementary to this effort, mea-
surement campaigns that deliver unfolded data that can be compared to state-of-the-art
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theoretical calculations have been, and will further be, pursued in order to stress-test our
understanding of the Standard Model.

The physics of jets and their structure plays a special role in this effort. First of all,
jets, i.e. collimated sprays of particles, are ubiquitous objects in hadronic-collision events.
Furthermore, in experimental analyses, jets can be used in the context of searches for new
physics, but also as a probe of strong-interaction phenomena and dynamics. Measurements
of jet cross sections provide stringent tests of our understanding of the strong interaction,
ranging over several orders of magnitude in the relevant energy scales. High-quality jet
data are used in fits for the strong coupling constant, see e.g. [4–8] and form an important
input for constraining parton distribution functions (PDFs) [9–16].

An accurate description of jets and their structure poses numerous theoretical chal-
lenges. Despite the fact that 2 → 2 processes involving either two jets or a jet and an
electroweak gauge boson are known to next-to-next-to-leading order (NNLO) accuracy in
the strong coupling expansion, the presence of multiple scales, such as the jet transverse
momentum, the jet radius and the substructure variables we would like to consider, e.g.
the jet mass, renders fixed-order predictions in QCD insufficient. In order to achieve higher
precision, fixed-order results need to be combined with resummed calculations. However,
all-order evaluations of jet substructure observables are far from trivial due to the pres-
ence of hard boundaries in phase space, which give rise to non-global effects [17, 18], and
because of the algorithmic nature of jet definitions that make all-order factorisations diffi-
cult to achieve. These challenges have been tackled by the theory community over the past
decade and nowadays, thanks to numerous QCD studies, e.g. [19–32], a deeper understand-
ing of jet substructure has been reached. One of the lessons we have learnt from these in-
vestigations is that so-called grooming techniques, i.e. jet substructure algorithms that aim
to clean up a jet by removing from its constituents the ones that originate from soft physics,
actually improve our ability to use perturbation theory to describe jet physics. They re-
duce the impact of non-perturbative effects due to hadronisation and the underlying event
(UE), for a recent review, see e.g. [33]. Furthermore, the all-order structure of the pertur-
bative result is also simplified because groomers, such as the modified-MassDrop/SoftDrop
algorithm [19, 21], can eliminate the logarithmic enhancement due to soft gluons at wide
angles, including the intricate structure of non-global logarithms by turning logarithms of
the observable under consideration into logarithms of an external parameter, such as zcut
in the case of SoftDrop.

In this study we concentrate on high-energy proton-proton collisions that result in
the production of an electroweak Z boson (decaying into a pair of muons) in association
with one or more jets. For the jet with the highest transverse momentum, we are going
to consider jet angularity observables [34], which are variables that probe the energy flow
within a jet. Prior to the angularity evaluation we optionally perform the SoftDrop proce-
dure on the candidate jet. The considered jet angularities form an interesting testbed for
our theoretical understanding of intra-jet QCD dynamics. Furthermore, they over great
application potential, e.g. in distinguishing quark-like from gluon-like jets, in a theoreti-
cally well-defined way [35–37], or in extractions of the strong coupling constant [38]. Our
analysis begins with a detailed phenomenological study of jet angularities, which is per-
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formed exploiting state-of-the-art Monte Carlo (MC) parton shower simulations. Beside
assessing the relative importance of the different contributions that affect the angularity
distributions, such as perturbative radiation, hadronisation and the UE, our studies aim
to quantify the role of modern NLO merging techniques on jet substructure distributions.
We then move to the second part of the paper, where we present first-principle theoreti-
cal predictions for the observables of interest. Our resummed calculation is performed at
next-to-leading logarithmic accuracy (NLL) matched to fixed-order predictions evaluated
at NLO in αs. Furthermore, by keeping track of the jet flavour in our matching proce-
dure, we are able to obtain what is usually referred to as NLL′ accuracy. We stress that
such accuracy is achieved for both the groomed and the ungroomed distributions, which
implies that we account for single-logarithmic corrections originating from soft emissions
at wide angle, that we treat as an expansion in the jet radius parameter, and from non-
global logarithms, in the limit of large number of colours (Nc).1 Furthermore, our initial
detailed study of MC predictions allows us to supplement our perturbative NLO + NLL′

predictions with non-perturbative corrections extracted from hadron-level MC simulations.
Our theoretical predictions are fully differential in the kinematics of the jets and of the
leptonic decay products of the Z boson, so that we can impose realistic fiducial cuts and
compare them to the distributions obtained from MC event generators. Our predictions
are obtained with the resummation plugin of the SHERPA generator framework [39] and
they can be directly compared to unfolded measurements from the LHC collaborations,
once these become available.2

The paper is organised as follows: in section 2 we introduce the class of angularity
observables to consider and detail our event selection cuts. In section 3 we present and
compare hadron-level predictions for groomed and ungroomed jet angularities from the
HERWIG and PYTHIA event generators, based on the leading-order matrix elements, and
SHERPA, using multijet merging at leading and next-to-leading order. Section 4 is devoted
to the all-orders evaluation of jet angularities at NLO + NLL′ accuracy using the SHERPA
resummation framework. In section 5 we compare our resummed predictions with the
parton-level results of our MC simulations. We extract non-perturbative corrections from
the full particle-level simulations and apply them to our NLO + NLL′ predictions. Our
conclusions are presented in section 6. Additional results are collected in appendix A.

2 Observable definition

In this study we concentrate on the production of a leptonically decaying Z boson associated
with one or more jets at the LHC. Jets are defined using the anti-kt clustering algorithm [44]
with radius parameter R0 and standard E-scheme recombination, i.e. the momenta of

1The counting is different in the case of SoftDrop jets with angular exponent β = 0 because only collinear
radiation is kept by the groomer and the resulting distributions are single-logarithmic. In this case, our
calculations correctly capture the leading-logarithmic contributions with non-vanishing coefficients.

2We note that similar studies have been performed also in the context of Soft-Collinear Effective Theory
(SCET), see e.g. [40–43]. To the best of our knowledge, those calculations, when performed for proton-
proton collisions, are limited to the leading contribution in the small jet-radius limit.
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objects that are paired together are simply added so that the resulting jet momentum is
given by the sum of its constituents’ momenta.

On the hardest jet, i.e. the jet with the largest transverse momentum pT,jet, we measure
the angularities [34, 45, 46]

λκα =
∑
i∈jet

(
pT,i∑

j∈jet pT,j

)κ(∆i

R0

)α
, (2.1)

where
∆i =

√
(yi − yjet)2 + (φi − φjet)2 , (2.2)

is the Euclidean azimuth-rapidity distance of particle i from the jet axis. Our study is
limited to a subset of the above defined general angularities, namely the ones that exhibit
infrared and collinear (IRC) safety. This poses the restrictions κ = 1 and α > 0. Fur-
thermore, it is well-known [29, 47] that IRC safe angularities with α ≤ 1 are sensitive to
recoil against soft emissions, leading to a rather complicated resummation structure. To
circumvent these additional complications, we compute for these angularities the distance
measure in eq. (2.2) with respect to the jet axis obtained by reclustering the jet consti-
tutents with the anti-kt algorithm but using the Winner-Take-All (WTA) recombination
scheme [48]. We are also interested in computing angularities on groomed jets. In this
case, we recluster the jet with the Cambridge-Aachen (C/A) algorithm and consider the
SoftDrop grooming algorithm with parameters zcut and β [21]. The angularity is then
computed on the resulting SoftDrop jet, i.e. both sums in eq. (2.1) are restricted to the
particles that survived the grooming. For groomed jets we also adopt the WTA prescription
for angularities with α ≤ 1.

In order to highlight the behaviour of the angularity distributions in different en-
ergy regimes, standard and groomed angularities are considered in different jet transverse
momentum bins. This will allow us, for instance, to better study the impact of non-
perturbative corrections, e.g. from the parton-to-hadron transition. We note that, in order
to avoid issues related to bin-migration, which greatly complicates the structure of the
resummation of the SoftDrop β = 0 (modified MassDrop) angularities [49], we shall always
choose the reference transverse momentum pT,jet to be the one before grooming. Our the-
oretical predictions, both the ones obtained with matrix-element improved parton showers
and with all-order resummation matched to fixed-order calculations, account for fiducial
cuts and therefore can directly be compared to unfolded measurements.

Event selection cuts. We close this section by detailing the fiducial volume for the
jets and leptons in our subsequent studies. Our choices follow the selection of a recent
(preliminary) CMS measurement [50]. We consider the inclusive production of a pair of
oppositely charged muons in proton-proton collisions at 13 TeV centre-of-mass energy. We
require all final state particles to have pseudo-rapidity |η| < 5. For both muon candidates
we require

pT,µ > 26 GeV , and |ηµ| < 2.4 . (2.3)
The lepton pair has to pass the additional conditions

70 GeV < mµ+µ− < 110 GeV , and pT,µ+µ− > 30 GeV . (2.4)
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In what follows we will refer to the lepton pair as Z boson, where nevertheless we imply
the inclusion of off-shell effects. We then select events that exhibit at least one anti-kt
jet [44] with

|yjet| < 1.7 , and R0 = 0.8, 3 (2.5)

and consider several bins in pT,jet starting at 50 GeV following [50]. We compiled results for
all bins used there,4 but will in the following limit the discussion to pT,jet ∈ [120, 150] GeV
and pT,jet ∈ [408, 1500] GeV that we find representative for the lower and higher jet scale
selections. In order to gain better control over NLO QCD corrections for the Zj production
process, that become large when the Z-boson transverse momentum is significantly smaller
than pT,jet [51], we require the transverse momenta of the lepton pair and the leading jet
to be largely balanced. To this end we impose the constraint

∆pT
Z,jet ≡

∣∣∣∣∣pT,jet − pT,µ+µ−

pT,jet + pT,µ+µ−

∣∣∣∣∣ < 0.3 . (2.6)

Finally, we require the Z-boson and the leading jet to be well separated in azimuthal
angle, i.e.

∆φ
Z,jet ≡ |φZ − φjet| > 2 . (2.7)

In our following studies we will consider the jet angularities λκα with (κ, α) = (1, 1/2), (1, 1)
and (1, 2). In previous studies [34, 35] these have been dubbed Les Houches Angularity
(LHA) λ1

1/2, Width λ1
1, and Thrust λ1

2, respectively. We adopt this naming convention
here. For SoftDrop grooming we use β = 0, zcut = 0.1 throughout.

3 State-of-the-art Monte Carlo study of jet angularities

The Born-level contributions to Zj production are given by the two channels
pp→ µ+µ− + q/g, where q represents a massless quark or anti-quark. Jet angularities
become non-trivial upon inclusion of additional radiation, which in general purpose MC
generators is accounted for by parton shower simulations [52]. However, to properly in-
clude non-logarithmic corrections, e.g. from hard real emissions, these should be matched
to exact higher-order matrix elements, as obtained, for example using event generators
such as MCFM [53–55], POWHEG [56–58] or MADGRAPH5_aMC@NLO [59, 60]. Here we
consider simulations including the complete set of NLO QCD corrections to the Zj and
Zjj production processes matched to the SHERPA parton shower in the MEPS@NLO for-
malism [61]. To address the sensitivity of the angularities to non-perturbative corrections
we also account for UE contributions to the collision final states and model the parton-to-
hadron transition. In this section we describe the calculational setups for our Monte Carlo
simulations and then present corresponding predictions for the groomed and ungroomed
LHA, Width, and Thrust angularities.

3Results for R0 = 0.4 are collected in appendix A.3.
4Our framework is, of course, general and theoretical predictions for different jet radii, angularity expo-

nents and SoftDrop parameters, as well as different selection cuts and pT,jet bins, can be easily obtained.
They can be provided upon request.
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3.1 Monte Carlo generator setup

We compile MC predictions for the jet angularities with the SHERPA [62, 63] event generator,
version 2.2.10, using the NNPDF-3.0 NNLO PDF set [64]. We consider the inclusive Zj
production process in the MEPS@NLO multijet merging formalism [61], thereby combining
the NLO QCD matrix elements for µ+µ−j and µ+µ−jj production, matched with the
SHERPA Catani-Seymour dipole shower [65]. We set the merging-scale parameter to Qcut =
30GeV (which is of the order of the jet pT cut used in our event selection). We obtain
the QCD one-loop amplitudes for the one- and two-jet processes from RECOLA [66, 67],
using the COLLIER library [68] for the evaluation of tensor and scalar integrals. To assess
the impact of the QCD one-loop corrections, we furthermore compile MEPS@LO [69]
predictions based on merging the one- and two-jet leading-order matrix elements, using
Qcut = 30GeV as well.

The perturbative scales entering the calculation are defined according to the CKKW-
style scale setting prescription [69, 70]. In this procedure the hard-process partons are clus-
tered into a Born-like 2→ 2 configuration that defines the core process with an associated
scale µcore. For the production channels considered here the event-wise determined core
process, of order αncore

s , can correspond to jj → µ+µ− (ncore = 0), jj → Zj (ncore = 1),
or jj → jj (ncore = 2). For the three possible cluster configurations the corresponding
core-process scale is given by

µcore =


mµ+µ− : ncore = 0√
m2
µ+µ− + p2

T,µ+µ− : ncore = 1 .
pT,j : ncore = 2

(3.1)

The core-process scale is then used to define the factorisation scale and the parton
shower starting scale of the core process, i.e.

µF = µcore , µQ = R0µcore . (3.2)

Our choice of µQ here is motivated by the corresponding scale in the resummed calculation,
cf. section 4. The effective renormalisation scale, µCKKW, of the n-parton hard matrix
elements corresponds to

αns (µ2
CKKW) = αncore

s (µ2
core)

n−ncore∏
i=1

αs(ti) , (3.3)

with ti the reconstructed shower-branching scales. To estimate the perturbative uncertain-
ties of our MC predictions, we do on-the-fly [71] 7-point variations [72] of the factorisation
and renormalisation scales in the matrix elements and the parton shower. The uncertainty
bands given later on correspond to the envelope of the settings {(1

2µR,
1
2µF), (1

2µR, µF),
(µR,

1
2µF), (µR, µF), (µR, 2µF), (2µR, µF), (2µR, 2µF)}.
To model the parton-to-hadron transition we use the SHERPA cluster fragmentation

model [73]. The UE simulation relies on the SHERPA implementation of the Sjöstrand-Zijl
multiple-parton interaction model [74]. In both models the default set of tuning parameters
is used, see [63] for details.
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To obtain further independent predictions, in particular for the modelling of non-
perturbative effects, we compile additional results from HERWIG [75, 76], version 7.2.1,
and PYTHIA [77], version 8.303. For both generators we consider the µ+µ−j-production
process at leading order,5 invoking the respective default models for the QCD parton
shower, hadronisation and UE simulation.

For event selection and analysis we employ the RIVET analysis package [80, 81].
For jet reconstruction we use the FASTJET package [82]. For the SoftDrop grooming
we rely on the implementation in the RecursiveTools class which is a part of the
FASTJET contrib package.

3.2 Hadron-level Monte Carlo predictions

To set the stage we begin by directly comparing the hadron-level predictions obtained from
the various event generators, i.e. calculational setups, for the three considered jet angulari-
ties, both, with and without SoftDrop grooming. These will later serve as means to extract
non-perturbative corrections and estimates for related uncertainties for our resummed pre-
dictions, see section 5.

In figure 1 and figure 2 we collate the generators’ predictions for the lower and higher
pT,jet slice, respectively. For each angularity we provide results without (left column)
and with (right column) SoftDrop grooming. The broken x-axes indicate the fact that
the first bins start at zero and, hence, they appear unbounded on a logarithmic scale.
For each individual panel we include a ratio plot, with the SHERPA MEPS@NLO result
taken as reference. For the SHERPA MEPS@LO and MEPS@NLO predictions we include
uncertainty bands, green solid and red hatched, respectively, that reflect the envelope of
the 7-point scale variations in both the matrix-element and parton-shower component. The
inclusion of the exact NLO QCD one-loop corrections in the MEPS@NLO method results
in a significant reduction of scale uncertainties, for all angularities both in their groomed
and ungroomed variants.

Considering the ungroomed angularities for the lower pT,jet window first, we observe
that with increasing α the distributions peak at lower observable values. While the LHA
angularity distribution exhibits a Sudakov peak around λ1

1/2 ≈ 0.25, for the Thrust variable
the maximum is at λ1

2 ≈ 0.05. All generator predictions largely agree on the peak position.
However, for lower observable values quite sizeable deviations can be observed, reaching
and partially exceeding 50%. Notably, the two SHERPA predictions agree quite nicely in
this observable range, that in fact is significantly affected by non-perturbative corrections,
described by the same models in the MEPS@LO and MEPS@NLO simulations. However,
HERWIG and PYTHIA use alternative models and parameter tunes for hadronisation and UE.
Both generators predict somewhat narrower distributions in comparison to SHERPA. For
large values of the angularities, i.e. towards the kinematical endpoints, the MEPS@NLO
calculation predicts somewhat larger event fractions than what is obtained using LO matrix
elements, with the largest deviation appearing in comparison to the PYTHIA LO result. This

5In the case of HERWIG, we could have also included NLO-accurate matrix elements [78, 79]. However,
since the baseline for our MC simulations are SHERPA MEPS@NLO predictions, we restrict ourselves to
leading-order matrix elements for simplicity.
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systematic effect which barely exceeds 15% is, however, within the scale uncertainty band.
It is interesting to note that a similar pattern between LO and NLO matrix elements was
already observed by the CMS collaboration [83] when comparing their measurement of the
groomed jet mass to analytic QCD predictions.

Upon invoking SoftDrop grooming of the jet constituents, the spread in the generator
predictions is sizeably reduced. In particular, in the region of very small observable values,
dominated by non-perturbative effects in the ungroomed case, the predictions now agree
to within 10%. It is clearly visible that grooming decreases the jet-angularity values, and
in fact significantly sculpts the observable distributions. With increasing α, a secondary
peak emerges below the grooming transition point that moves towards smaller values of
λ. For large observable values grooming has much smaller impact and the spread in the
generator predictions observed in the ungroomed case basically remains unaltered.

For higher jet transverse momenta, i.e. pT,jet ∈ [408, 1500] GeV presented in figure 2,
the picture somewhat changes. Both for the groomed and ungroomed angularities we ob-
serve a larger variation of the predictions for λ & 0.1. The differences between the SHERPA
MEPS@NLO predictions and the PYTHIA LO results reach up to 30%. This increase with
respect to the lower-pT,jet slice can be expected as the inclusive K-factors, with the fiducial
cuts adopted here, are also found to be increasing functions of jet transverse momentum. It
is interesting to note that the SHERPA MEPS@LO results agree very well with the HERWIG
predictions, for all three considered angularities, with and without grooming. The inclu-
sion of the full set of one-loop virtual corrections for the one- and two-jet processes in the
MEPS@NLO calculation translates into corrections of O(10− 15%) for larger values of λ.
Despite the larger sensitivity to higher-order perturbative corrections, the relative impact
of non-perturbative effects, most relevant for small angularity values, is reduced for jets
with high transverse momentum.

We note that measurements of (groomed) jet angularities differential in pT,jet provide
means to probe the modelling of perturbative as well as non-perturbative corrections in MC
generators. In section 5 we will use the presented simulations to extract non-perturbative
corrections for the resummed calculations. There we will also present a comparison of the
generators’ parton-level predictions, i.e. without the inclusion of UE and hadronisation,
with the NLO + NLL′ results.
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Figure 1. Comparison of hadron-level predictions for ungroomed and groomed jet-angularities
in Zj production from PYTHIA and HERWIG (both based on the LO Zj matrix element), and
MEPS@LO as well as MEPS@NLO results from SHERPA. Here pT,jet ∈ [120, 150] GeV and λbc
stands for the bin centre.
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Figure 2. Comparison of hadron-level predictions for ungroomed and groomed jet-angularities
in Zj production from PYTHIA and HERWIG (both based on the LO Zj matrix element), and
MEPS@LO as well as MEPS@NLO results from SHERPA. Here pT,jet ∈ [408, 1500] GeV and λbc
stands for the bin centre.
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4 All-order resummation at next-to-leading logarithmic accuracy

To perform the NLL resummation of the jet angularities we use the SHERPA implementa-
tion of the CAESAR resummation formalism [47], first presented in [39]. This framework has
recently been employed to obtain resummed predictions for SoftDrop thrust [84] and mul-
tijet resolution scales [85] in electron-positron collisions, as well as NLO+NLL′ predictions
for SoftDrop groomed hadronic event shapes, in particular groomed transverse thrust [86].

For a generic observable, the master formula for the all-order cumulative cross section
for observable values up to v, with L = − ln(v), can be written as a sum over partonic
channels δ:

Σres(v) =
∑
δ

Σδ
res(v) , with

Σδ
res(v) =

∫
dBδ

dσδ
dBδ

exp

−∑
l∈δ

RBδl (L)

PBδ(L)SBδ(L)FBδ(L)Hδ(Bδ) ,
(4.1)

where dσδ
dBδ is the fully differential Born cross section for the partonic channel δ and H

implements the kinematic cuts applied to the Born phase space B. F denotes the multiple
emission function which, for additive observables such as the angularities considered in this
paper, is simply given by F(L) = e−γER

′
/Γ(1 + R′), with R′(L) = ∂R/∂L and R(L) =∑

l∈δ Rl(L). The ratio of parton-distribution-functions (PDFs) P takes into account the
true initial-state collinear scale. The soft function S implements the non-trivial aspects
of colour evolution. The collinear radiators Rl for the hard legs l were computed in [47]
for a general observable V scaling for the emission of a soft-gluon of relative transverse
momentum k

(l)
t and relative rapidity η(l) with respect to leg l as

V (k) =
(
k

(l)
t

µQ

)a
e−blη

(l)
dl(µQ)gl(φ) . (4.2)

The CAESAR resummation plugin to SHERPA hooks into the event generation framework,
facilitating the process management, and providing access to the COMIX matrix-element
generator [87], as well as phase-space integration and event-analysis functionalities. The
SHERPA framework is also used to compile all the required higher-order tree-level and one-
loop calculations. For the NLO QCD computations we use the SHERPA implementation
of the Catani-Seymour dipole subtraction [88] and the interfaces to the RECOLA [66, 67]
and OPENLOOPS [89] one-loop amplitude generators. The plugin implements the building
blocks of the CAESAR master formula eq. (4.1), along with the necessary expansion in αs
used in the matching with fixed-order calculations. The building blocks are evaluated fully
differentially for each Born-level configuration Bδ of a given flavour and momentum con-
figuration.6

In ref. [86] the CAESAR formalism and the corresponding implementation in the SHERPA
plugin were extended to include the phase-space constraints given by SoftDrop grooming

6Note, for the case of non-additive observables that feature a non-trivial multiple emission function, we
pre-compute F numerically and tabulate its values on a grid for read-out during event generation.
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with general parameters zcut and β. Note that, as already pointed out in [21], differential
distributions computed from eq. (4.1) at NLL are discontinuous at L = Lz = − ln zcut.
A way to cure this behaviour was proposed in ref. [84]. However, as this discontinuity
is a subleading (NNLL) effect, we decided to leave it untouched and checked that the
two approaches were in agreement within our theoretical uncertainties. Furthermore, we
note that our resummation is strictly valid in the limit of small zcut, i.e. λα � zcut � 1.
However, for β = 0 SoftDrop, finite-zcut corrections are already present at the (leading)
single-logarithmic accuracy [19]. For the specific choice of zcut = 0.1 adopted in this paper,
these corrections have been studied in [49] in the context of the groomed jet mass in dijet
processes, and found to have a negligible effect around one percent.

The treatment of the kinematic endpoint is implemented in the same way as in ref. [86]
by shifting the relevant logarithms and adding power-suppressed terms to achieve a cumula-
tive distribution that approaches one at the kinematic endpoint and has a smooth derivative
approaching zero. In particular, we introduce the additional parameters p, xL, vmax and
modify all logarithms by power-suppressed terms according to

ln
(
xL
v

)
→ 1

p
ln
[(
xL
v

)p
−
(
xL
vmax

)p
+ 1

]
= L . (4.3)

Here we set vmax to the numerically determined endpoint of the NLO distribution, and by
default use p = 1.

We fix the renormalisation and factorisation scale to the transverse momentum of the Z
boson, pT,µ+µ− , and the resummation scale to µQ = pT,µ+µ−R0. Note, for the Born config-
uration, on which the resummation is performed, it holds pT,µ+µ− ≡ pT,jet. To evaluate the
perturbative uncertainties of our results, we vary µR and µF according to a 7-point varia-
tion, i.e. (µR/pT,µ+µ− , µF /pT,µ+µ−) ∈ {(0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 2), (2, 1), (2, 2)},
simultaneously in the fixed-order calculation and the resummation. The argument of αs in
the resummation is always taken to be µR, with a compensating term for the LL depen-
dence to remain NLL accurate and ignoring the NNLL ambiguity this introduces in pure
NLL terms. Additionally, we calculate the resummed distribution with xL ∈ {0.5, 1, 2} for
µR = µF = pT,µ+µ− . The total uncertainty is obtained by taking the envelope of all those
predictions with (µR/pT,µ+µ− , µF /pT,µ+µ− , xL) = (1, 1, 1) as central value.

The ingredients of the master formula eq. (4.1) are readily available in the case of
global event shapes, with or without SoftDrop grooming. However, some adaptations are
needed if we want to apply this approach to the resummation of non-global jet angularity
distributions measured on the leading jet in Z+jet events. These are described in section 4.1
below. We then discuss aspects related to the matching to NLO fixed-order calculations in
section 4.2 and present numerical results in section 4.3.

4.1 Jet angularities resummation within the Sherpa framework

Compared to the formalism described above and used in [39, 85, 86], some adjustments
are necessary to the SHERPA resummation framework. In particular we have to take into
account the fact that the angularities are sensitive to radiation within the hardest jet in the
event only. Let us label, for definiteness, the initial state legs as l = 1, 2 and the measured

– 12 –



J
H
E
P
0
7
(
2
0
2
1
)
0
7
6

final state leg as l = 3. As our observable is not sensitive to radiation collinear to the
initial state legs, we are allowed to set P = 1 and R1 = R2 = 0 in eq. (4.1). Keeping in
mind that the Born phase space is given by final states consisting of a single parton plus
the Z boson, only one radiator is left. In terms of eq. (4.2), the angularity observables λ1

α

can be parametrised by

a = 1 , (4.4)
b3 = α− 1 , (4.5)

g3d3(µQ) =
(

2cosh(y3)
R0

)α−1 µQ
pT,jetR0

, (4.6)

where y3 ≡ yjet denotes the rapidity of the hard jet. Note that for our choice of µQ =
pT,jetR0 the last factor in g3d3 equals unity.

A number of complications arises when considering the presence of a jet boundary.
First, when originally computing the radiators, one conventionally divides the phase space
for each dipole at η = 0. An arbitrary rapidity condition with respect to leg l, ηl > ηmin,l,
leads to an additional contribution

∆Rl(L) = −2Cl(ηmin,l − ln 2El/Q)t(L/a) , (4.7)

where we have introduced

t(L) =
∫ µQ

µQe−L

dkt
kt

αs(kt)
π

= − ln(1− 2αsβ0L)
2πβ0

, (4.8)

with β0 = (11CA−2nf )/(12π). Note that the last equality holds with αs = αs(µR) at NLL
accuracy. We can use this to reflect the rapidity requirement given by the jet condition by
setting ηmin,3 = ln(2 cosh(y3)/R0). Here Q is an arbitrary scale, which we choose to identify
with the partonic centre-of-mass energy, that ultimately cancels in the final expressions.
For global observables this cancellation happens with the soft function S, however, the
restriction to radiation inside the jet additionally affects the structure of soft emissions.
The details were worked out in [90] for the jet-mass observable. Those results apply to the
general class of angularities as well, as they depend on the scaling of the observable with
kt only, i.e. on the parameter a in eq. (4.2). This implies (using a = 1)

SBδ(L) = SBδglobal(t(L))SBδnon-global(t(L)) . (4.9)

In a general way, the global contribution can be written as

SBδglobal(t) = Tr
[
He−t(ΓBδ)†ce−tΓBδ

]
/Tr[cH] , (4.10)

where c and H are the colour metric and hard function, respectively, see [39, 85] for details
of the notation. We can write the matrix Γ in colour space as a sum over dipoles

ΓBδ =
∑

i>j∈Bδ

Ti ·TjIij . (4.11)
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Figure 3. Sudakov suppression factor associated with the non-global logarithms, S(3)
non-global(t(L)).

The two curves correspond to the case where the final-state parton is either a quark (solid red) or a
gluon (dashed blue). The Sudakov is plotted as a function of the scaled variable t(L) (cf. eq. (4.8)).
For illustrative purpose, the top axes show the corresponding values of λ1

α (irrespective of α) for
two representative jet transverse momenta.

In our case only three dipoles, namely 12, 13 and 23, contribute to the soft function. As a
consequence, by exploiting colour conservation, all colour operators Ti ·Tj can be written
as linear combinations of the SU(3) Casimir invariants CF and CA and, consequently,
the matrix structure of eq. (4.10) disappears. The coefficients of the single-logarithmic
function t, can be obtained by integrating the matrix elements for each dipole ij over the
appropriate phase space. Because the collinear contributions have already been included in
the radiators Rl in eq. (4.1), the Iij coefficients are purely due to soft wide-angle radiation.
Consequently, they are functions of the jet radius R0 only, and are independent of the
angularity exponent α. In particular, they coincide with those computed in [90] for the
jet mass:

I12 = R2
0

4 , (4.12)

I13 = I23 = R2
0

16 +O(R4
0) . (4.13)

Note that by including the above dipoles we account for initial-state radiation at NLL
accuracy, as an expansion in powers of the jet radius. Higher order terms in the jet radius
expansion can be computed, but in addition to the suppression in R2

0 the corresponding
coefficient drops rapidly, and even for R0 = 1 the first terms are an appropriate approxi-
mation [90].

The non-global part SBδnon-global(t) is computed numerically, in the large-Nc limit, fol-
lowing the algorithm highlighted in [17], as also done in [90].7 This can straightforwardly

7Note that our definition of the scaled variable t(L) differs from the one in [17] by a factor 2 and from
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be applied to ungroomed angularities. For SoftDrop groomed distributions, the non-global
factor remains the same for v ≥ zcut and saturates at that value, i.e. S(groomed)

non-global(v) =
S

(ungroomed)
non-global (max(v, zcut)). We also note that the non-global contribution only depends on
v (and the jet transverse momentum through αs(µR)) but not on the angularity parame-
ter α. Similarly, for the groomed case, the contribution from non-global logarithms only
depends on zcut and not on β. The main reason behind this is that, at single-logarithmic
accuracy, non-global logarithms originate from configurations that are strongly ordered in
energy with angles commensurate with the jet radius R0.

In practice, Snon-global(t) is computed separately for each possible colour dipole, either
incoming-incoming or incoming-final. These contributions are independent of the jet ra-
pidity meaning, in particular, that the two possible incoming-final configurations are equal.
One can then reconstruct the two Born channels δ from the dipole contributions as done
in [90]. This procedure allows one to recover the full-Nc result at least for the first non-
trivial term of the expansion in αs. We finally note that the numerical procedure described
in [17] introduces an angular cut-off θmin to regulate the collinear divergence. We have
performed 4 independent runs with θmin = {0.008, 0.004, 0.002, 0.001} and extrapolated
the result to θmin → 0 using the same approach as in [91].

Figure 3 shows the resulting non-global contributions SBδnon-global(t) for both (Born-
level) quark and gluon jets. The upper set of axes indicate what value of t corresponds
to the observable value λ1

α for fixed pT,jet. We have checked that they agree within ∼ 1%
with the results obtained in [90] at t . 0.4. However, the results presented here extend to
larger values of t, as appropriate for the kinematic range investigated in this paper.

To gauge the numerical impact of the global and non-global soft function on our NLL
predictions for the jet-angularity variables, we present in figure 4 results for the ungroomed
case. As both S-function contributions contain terms expected to vanish in the R0 → 0
limit,8 we here show results for the two considered jet radii, R0 = 0.4 and R0 = 0.8.
Besides the complete NLL distribution (in red), we depict results for Snon-global = 1 (in
blue), allowing us to quantify the numerical effect of non-global logarithms, and Sglobal =
Snon-global = 1 (in green), effectively neglecting soft wide-angle emissions entirely. We
observe that these contributions have a bigger impact for larger jet radii as theoretically
anticipated. Furthermore, we observe a somewhat milder (relative) impact of S in the α =
0.5 case, when comparing to α = 2. For the latter a quite significant shift of the distribution
is found. The case α = 1 lies in between the other two. This is understood from the fact
that, for a given value of the angularity, the soft function is independent of α while the
effect of the collinear contribution increases when decreasing α. When invoking grooming,
the soft function remains unchanged for observable values larger than the transition point.
However, below the transition point the soft-function contributions become constant, given
by Snon-global(zcut) and Snon-global(zcut)Sglobal(zcut), respectively. This is illustrated and
confirmed in figure 15 in appendix A.1. We have checked explicitly that our observations

the one in e.g. [39, 47, 85, 86] by factor of 1/2.
8The global part of the soft function becomes unity in the R0 → 0 limit while the non-global soft function

remains non-trivial.
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Figure 4. Anatomy of the soft structure of the NLL predictions for angularities λ1
α, for α ∈

{1/2, 1, 2} (top to bottom), for jet radius R0 = 0.4 (left) and R0 = 0.8 (right), with pT,jet ∈
[408, 1500] GeV. Besides the full NLL distribution (red) variants obtained by either excluding
the non-global soft contribution (Snon-global = 1, blue) or the entire soft contributions (Sglobal =
Snon-global = 1, green) are shown.
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on the impact of the soft function both for the groomed and ungroomed case also hold
after matching to NLO, as described in what follows.

We close this discussion of the NLL resummation, by noting, had we defined jets
with algorithms that differ from anti-kt, for instance, C/A or kt, a new class of so-called
clustering logarithms would have appeared at NLL, see e.g. [92–96].

4.2 Matching to NLO and achieving NLL′ accuracy

In order to achieve a faithful description of the angularity distributions across their whole
spectrum, we need to match our all-order results with fixed-order predictions, computed
here at NLO accuracy. Our matching procedure will keep track of the jet flavour, so that
we can obtain what is usually referred to as NLO + NLL′ accuracy.

The matching procedure is defined for the cumulative distribution (for simplicity, we
use λ ≡ λ1

α)

Σ(λ) =
∫ λ

0
dσ . (4.14)

We also introduce the notation Σδ
res,fo,match (see also [85, 86]) in order to denote the results

for the cumulative distribution for the (family of) flavour channel(s) δ computed, with
resummation, at fixed order, or matched between the two, respectively. In the following,
the channel label is omitted in general expressions and we use the shorthand σ = Σ(1).
We denote the expansion of any cumulative distribution Σ to order α2

s relative to the
pp→ µ+µ−j Born process as

Σ = Σ(0) + Σ(1) + Σ(2) +O(α4
s) , Σ(k) ∝ α2

EW α1+k
s . (4.15)

In practice, at least for Σ(2)
fo , we only calculate

Σ(2)
fo (λ) =

∫ 1

λ
dσ(2) , Σ(2)

fo = σ
(2)
fo − Σ(2)

fo . (4.16)

We employ a multiplicative matching scheme, in which, for every partonic channel δ,
we have

Σδ
match,mult(λ) = Σδ

res(λ)
[
1 + Σδ,(1)

fo (λ)− Σδ,(1)
res (λ)

σδ,(0)

+ 1
σδ,(0)

(
−Σδ,(2)

fo (λ)− Σδ,(2)
res (λ)− Σδ,(1)

res (λ)Σδ,(1)
fo (λ)− Σδ,(1)

res (λ)
σδ,(0)

)]
. (4.17)

By this procedure we automatically include the correct coefficients

αs
2πC

δ,(1) ≡ lim
λ→0

Σδ,(1)
fo (λ)− Σδ,(1)

res (λ)
σδ,(0) , (4.18)

thus reaching NLO + NLL′ accuracy. The final result we present corresponds to

Σmatch,mult(λ) =
∑
δ

Σδ
match,mult(λ) . (4.19)
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We use the anti-kt algorithm with our choice of parameters for defining jets, and
employ the flavour-kt algorithm from [97] (BSZ) to assign the flavour channels. However,
the BSZ algorithm is not immediately applicable here, due to the non-global structure of the
angularities. In particular, at any perturbative order there exist contributions with only a
single jet constituent, such that the angularity variable equals zero. In principle we need to
perform the resummation around multi-jet configurations. However, to achieve our target
accuracy, it is sufficient to guarantee that configurations occuring at LO are dressed with
the proper LL Sudakov factor. An explicit example is given in figure 5(b). Our matching
scheme achieves this by multiplying these Z+jj events with the full NLL Σδ

res corresponding
to the channel δ obtained after dropping the second jet, which will contain the correct LL
factor. It is hence crucial that the flavour channel of those contributions is defined by
the single object inside the leading jet alone. At the same time, in the example shown in
figure 5(a), the quarks need to be clustered in the collinear limit and the jet identified as
a gluon jet. While at this stage we could just use the combined flavour of all anti-kt jet
constituents, NLO contributions would spoil the IR safety of this procedure. Examples of
relevant configurations are given in figure 5(c) and (d), where an IR-safe algorithm needs
to ensure that the g → qq̄ splitting is undone first in the soft gluon limit. Here we propose
and employ the following algorithm to assign flavour to the leading anti-kt jet:

0. Start with the list O of all coloured final-state objects, containing particle four-
momenta and flavour labels, and the beams B, B̄ with their respective flavours.

1. Run the standard anti-kt algorithm with radius parameter R0 on O, and obtain the
objects in the leading, i.e. highest pT , jet J ⊂ O.

2. If J consists of only one object, J = {j ∈ O}, terminate the algorithm. The flavour
of j defines the flavour channel δ.

3. Otherwise, determine the pair {i, k} ⊂ O that minimises the BSZ measure dBSZ
ik and

the objects l,m that have minimal BSZ distances to the beams dBSZ
lB , dBSZ

mB̄
. Perform

a cluster step according to dBSZ = min(dBSZ
ik , dBSZ

lB , dBSZ
mB̄

):

(a) If dBSZ = dBSZ
ik , update O by removing i and k and adding a new object with

momentum pi + pk and the combined flavour of objects i and k.

(b) If dBSZ = dBSZ
lB (dBSZ = dBSZ

mB̄
), update O by removing l (m) and assign the

combined flavour of l and B (m and B̄) to the beam B (B̄).

Go to step 1 and repeat.

We finally can define bland versions of this algorithm, vetoing clusterings that would lead
to jets with multiple flavours by setting the corresponding distance measures to infinity.
We use this bland variant and identify every event as having a leading jet that is either
quark- or gluon-like.

Note that the only contribution that matters are the cross terms between Cδ,(1) and
the leading logarithms, which only depend on this flavour assignment and not on details
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R0 R0 R0

pg

R0

pg

(a) (b) (c) (d)

Figure 5. Examples for partonic input configurations to the flavour assignment algorithm. Con-
figuration (a) needs to be identified as a gluon jet in the collinear limit, whereas for (b) we need to
perform the LL resummation for a quark jet. IR safety requires that configurations (c) and (d) in
the limit where pg → 0 are identified as gluon and quark jet, respectively.

of partons outside the jet. Therefore, we can sort any configuration with the same flavour
assignment of the leading jet into the same channel. With this procedure we can ensure a
correct assignment of the LO real corrections, while maintaining an infrared-safe definition
of jet flavour also at NLO.

4.3 NLO + NLL′ validation and predictions

Splitting up the full fixed-order calculation into separate flavour channels in an infrared
safe way, enables us to validate our results, in particular the effective inclusion of the Cδ,(1)

coefficients, for each partonic channel δ individually. We hence compare the leading-order
contributions

Σδ
LO(λ) = σδ,(0) + Σδ,(1)

fo (λ) , (4.20)

Σδ
exp LO(λ) = σδ,(0) + Σδ,(1)

res (λ) , (4.21)

obtained respectively for the exact matrix element and for the expansion of the resummed
calculation. Similarly, at NLO, we compare

Σδ
NLO(λ) = σδ,(0) + Σδ,(1)

fo (λ)− Σδ,(2)
fo (λ) , (4.22)

Σδ
exp NLO(λ) = σδ,(0) + Σδ,(1)

res (λ) + Σδ,(2)
res (λ) , (4.23)

Σδ
exp NLO+C(λ) = σδ,(0) +

(
1 + Σδ,(1)

fo (λ)− Σδ,(1)
res (λ)

σδ,(0)

)
Σδ,(1)

res (λ) + Σδ,(2)
res , (4.24)

where Σδ
exp NLO(λ) is the NLO expansion of the all-order result, while Σδ

exp NLO+C(λ) also
includes the contribution from the Cδ,(1) coefficient. Note that ΣNLO(1) = ΣLO(1) =∑
δ

(
σδ,(0) + σ

δ,(1)
fo

)
.

In figures 6 and 7 we present the differential distributions dσ/d log λ ≡ dΣ(λ)/d log λ
in λ, separately for the gluon (figure 6) and quark (figure 7) channel, identified by the
BSZ flavour-kt algorithm, for the representative jet-pT slice pT,jet ∈ [408, 1500] GeV. We
have checked that analogous results are obtained for the other transverse momentum slices.
In all these validations we assume a jet radius of R0 = 0.8. As before, we consider the
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Figure 6. Fixed-order predictions for the gluon channel, identified with the BSZ algorithm, for
ungroomed (left column) and groomed (right column) angularities λ1

α, for α ∈ {1/2, 1, 2}, compared
to the expansion of the resummation at the corresponding order of αs, see text for details. The jet
transverse momentum is constrained to pT,jet ∈ [408, 1500] GeV.
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Figure 7. Fixed-order predictions for the quark channel, identified with the BSZ algorithm, for
ungroomed (left column) and groomed (right column) angularities λ1

α, for α ∈ {1/2, 1, 2}, compared
to the expansion of the resummation at the corresponding order of αs, see text for details. The jet
transverse momentum is constrained to pT,jet ∈ [408, 1500] GeV.
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angularities λ1
α with α ∈ {1/2, 1, 2} either without grooming or with SoftDrop grooming

using zcut = 0.1, β = 0. For each observable we include an additional panel that contains
the differences between the fixed-order result, i.e. eqs. (4.20) and (4.22), and the expansions
of the resummation up to order αs and α2

s , i.e. eqs. (4.21) and (4.23), (4.24), respectively.
We first note that for all angularities — groomed or ungroomed — the difference be-

tween the derivatives of ΣLO and Σexp LO vanishes for λ� 1, as expected in the ungroomed
case. For the groomed angularities there are in principle, for β = 0, deviations of O(zcut).
Those appear to be too small to observe numerically here, as was also observed for example
for event shapes in [86]. In comparing dΣNLO/dL and dΣexp NLO/dL (with L ≡ log(1/λ))
we observe a linearly rising difference, indicating missing terms of order α2

sL
2 in Σexp NLO.

By including the Cδ,(1) coefficient in Σexp NLO+C, the derivatives only differ by a constant,
confirming that missing terms in the cumulative distribution are reduced to order α2

sL.
Having validated our resummation calculations by comparing their expansions to the

corresponding fixed-order predictions, we finally present our matched resummed NLO +
NLL′ results and compare them to their NLO counterparts. Figures 8 and 9 contain
our predictions for the two considered transverse-momentum slices, using the same set
of observables and grooming parameters as above. These figures also illustrate how the
full result is obtained as the sum of the two flavour channels — quarks and gluons —
identified by our BSZ flavour-assignment procedure. We note that, for all observables, the
contribution from gluon jets is increased for the higher pT,jet slice compared to the case
pT,jet ∈ [120, 150] GeV. However, for both slices we observe a more significant contribution
from gluon jets for larger values of the angularities, while the low-λ1

α tails are entirely
dominated by quark jets. This is a confirmation that a cut on the jet angularity can serve
as a theoretically well-defined and IRC safe quark-gluon discriminant, as pointed out, for
instance, in refs. [29, 34–36]. We leave further investigation on this topic to future work.
In addition to the matched resummation, we show the full fixed-order predictions at NLO
accuracy. All-order effects turn out to be important essentially over the entire observable
range. In particular, only for the highest values of the observables do NLO and matched
predictions start to look similar. This appears to be the case for both ungroomed and
groomed distributions. After a detailed analysis, we have concluded that this effect, the
size of which is rather surprising, is driven by the large constant contribution of eq. (4.18),
which in turn originate from the large perturbative corrections that characterise the Z+jets
process. Similar observations have been reported for the groomed jet mass in Zj production
in ref. [98].
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Figure 8. Fixed-order and matched predictions at NLO and NLO+NLL′ accuracy, for ungroomed
(left row) and groomed (right row) angularities, for α ∈ {1/2, 1, 2}. The colour scheme indicates
how the gluon (red) and quark (blue) channel as identified with the BSZ algorithm stack up to form
the NLO+NLL′ prediction. The jet transverse momentum is constrained to pT,jet ∈ [120, 150] GeV.
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Figure 9. Fixed-order and matched predictions at NLO and NLO+NLL′ accuracy, for ungroomed
(left row) and groomed (right row) angularities, for α ∈ {1/2, 1, 2}. The colour scheme indicates how
the gluon (red) and quark (blue) channel as identified with the BSZ algorithm stack up to form the
NLO + NLL′ prediction. The jet transverse momentum is constrained to pT,jet ∈ [408, 1500] GeV.
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5 Final predictions

In this section we provide our final theoretical predictions for the leading-jet angularities.
We start the discussion with a comparison of our NLO + NLL′ results with parton-level
MC predictions from the PYTHIA, HERWIG and SHERPA event generators. We then discuss
the size of non-perturbative corrections due to hadronisation and UE, and demonstrate
how to account for these effects in our final NLO + NLL′ predictions.

5.1 NLO + NLL′ at parton level

Let us start by comparing our NLO+NLL′ results for the jet angularities against different
parton-level MC predictions. As in section 3 we consider the LHA (λ1

1/2), Width (λ1
1),

and Thrust (λ1
2) observables. In figures 10 and 11 we compare the NLO + NLL′ distribu-

tions against the parton-level MEPS@NLO predictions of SHERPA and the LO results from
PYTHIA and HERWIG. As before we consider two pT,jet slices, namely pT,jet ∈ [120, 150]GeV
in figure 10 and pT,jet ∈ [408, 1500]GeV in figure 11. The theoretical uncertainty for the
resummed and matched predictions is obtained by varying renormalisation (µR) and fac-
torisation (µF ) scales, as well as the parameter xL that determines the resummation scale,
as detailed in section 4, while the uncertainty band of the SHERPA MEPS@NLO predic-
tions corresponds to variations of µR and µF only, however, both in the matrix element
and parton-shower component. For this reason, the former yields a more conservative
assessment of the uncertainty than the latter.

A useful viewpoint to understand our results is to consider the different types of contri-
butions that affect the distributions. Roughly speaking, even at parton level, the behaviour
of the distributions at low values of the observables strongly depends on the details of the
treatment of radiation in the infrared region, e.g. the parton-shower cutoff or the Landau
pole in the resummation. This region is characterised by large non-perturbative corrections,
mostly due to hadronisation. The size of the region depends on the angularity exponent
α, the presence of grooming and the considered transverse momentum region. Following
the analysis of, e.g., refs. [19, 21] we can estimate the region of large non-perturbative
corrections to be

ungroomed jets or SoftDrop jets with α ≤ 1: λ1
α .

(
µNP

pT,jetR0

)min(α,1)

, (5.1)

SoftDrop jets with α > 1: λ1
α .

(
µNP

pT,jetR0

)(
µNP

zcutpT,jetR0

)α−1
1+β

,

(5.2)
where µNP is a non-perturbative scale that we take to be 1GeV. For α ≤ 1, the non-
perturbative corrections first come from the region of hard-collinear radiation which is
mostly unaffected by the grooming procedure. Conversely, when applying SoftDrop for
angularities with α > 1, the factor in the second bracket of eq. (5.2) is smaller than 1 and
the boundary of the non-perturbative region is pushed towards smaller observable values.9

9Applying SoftDrop for angularities with α ≤ 1 would still have the effect of reducing the impact of
other non-perturbative corrections such as multi-parton interactions and pileup, as well as reducing the
perturbative contributions from soft-large-angle radiation, including non-global logarithms.
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Above the thresholds identified by eqs. (5.1), (5.2), we expect (resummed) perturbation
theory to provide a good description of the underlying physical processes. In this second
region we can expect our NLO+NLL′ predictions and the MC ones to agree best. Finally,
we can identify a third region, which is characterised by very large values of the observ-
ables, close to the kinematic endpoint of the distribution. In our resummed and matched
prediction this region is under the jurisdiction of the NLO calculation, however the actual
value of the kinematic endpoint is strongly affected by the presence of additional emissions,
as captured by the parton-shower simulations. For the same reason, we also expect this
very last bin to be rather sensitive to non-perturbative contributions, especially the UE,
as we shall discuss below.

We can now move to analyse in more detail the various cases. First of all we consider
the ungroomed λ1

1/2 distribution for the lower transverse momentum bin in figure 10.
From the qualitative argument of eq. (5.1), we expect the boundary between the first
two regions to be located around λ1

1/2 ' 0.1. Indeed, in the region to the left of this
value the agreement between the NLO + NLL′ and the three parton-level MC predictions
is rather poor, with the NLO + NLL′ and SHERPA MEPS@NLO uncertainty bands not
overlapping. Above this value, the agreement improves, as expected, until we end up in
the third region, close to the endpoint, where the predictions from the two approaches
are in strong disagreement. The situation does not improve with SoftDrop, as we have
anticipated earlier. If anything the agreement between the two predictions deteriorates at
the boundary between the first and second region. We attribute this to the presence of
transition-point effects (remember that we have chosen zcut = 0.1). However, as these are
formally NNLL effects, they are not very-well modelled by our calculation. In the case of
the higher transverse momentum bin, the boundary between the first two regions is pushed
to smaller values of the observable (λ1

1/2 ' 0.05) and, consequently, the region where we find
agreement between resummation and MC simulations should widen. This appears clearly in
the top-left plot of figure 11, which represents the ungroomed case. In fact, the NLO+NLL′

result is in very good agreement with the PYTHIA prediction. Changes in behaviour of the
groomed distribution with respect to the lower-pT case are instead minimal. In both cases,
we still see large deviations in the endpoint region. Therefore, we must conclude that the
distribution of the LHA observable is not well theoretically controlled in our NLO + NLL′

calculation. Since the different parton-shower simulations agree among themselves much
better, a more systematic study of the differences with respect to the analytic approach
seems well motivated. In this context we note that ref. [99] presented such comparison
for the closely related BKS observables [45, 100] and fractional-energy correlations [47] in
e+e− collisions, in an approach that could be extended to groomed observables, also in
hadronic collision. In any case, as we shall see shortly, the other angularities considered in
this study do not suffer from this problem to the same extend.

Now let us examine the remaining two cases, i.e. the λ1
1 and λ1

2 distributions.10 Sim-
ilarly to the λ1

1/2 case it is convenient to consider the three different λ regions. Let us
10Note that, unlike in the λ1

1/2 case, the binning for ungroomed and groomed distributions is chosen
in a different way. More precisely, the groomed distributions have finer bin-spacing than the ungroomed
variants. Also note that we use different binning for the λ1

1 and the λ1
2 distributions.
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concentrate on the pT,jet ∈ [120, 150]GeV slice in figure 10 first. We observe differences
between our NLO+NLL′ results and MC predictions in the first region for the ungroomed
distributions, i.e. λ1

α . 0.01.
However, we notice that grooming now significantly improves the overall agreement

between the different predictions, especially for the λ1
2 case, as expected from eq. (5.2).

Differences between NLO + NLL′ and the parton-shower simulations in the endpoint re-
gion are also seen in this case, but this time all predictions remain consistent within the
estimated uncertainties. We also note the abrupt change of behaviour in the SoftDrop
distributions around λ1

α ' zcut = 0.1, which marks the boundary between the groomed
and ungroomed regions. As already explained, this discontinuity is beyond the accuracy
of our resummation and it is therefore reassuring that the theoretical uncertainty in this
region is rather large. Finally, we note that the overall agreement between our NLO+NLL′

calculation and the parton showers further improves for high transverse momentum jets,
evidenced by figure 11. Thus, unlike the case of the LHA observable, the NLO+NLL′ pre-
dictions for jet width and jet thrust in general agree with the corresponding results from
parton-shower simulations. This allows us to conclude that the λ1

1 and λ1
2 distributions

are well under theoretical control. It is interesting to point out that, in the context of
quark-gluon discrimination, the ATLAS collaboration has also observed [101] a worsening
of the agreement between the experimental data and Monte Carlo simulations, for smaller
values of α although with large uncertainties.

5.2 Impact of non-perturbative corrections

Both the NLO+NLL′ and the MC predictions in section 5.1 were given without including
non-perturbative corrections due to the UE and hadronisation. In this section we provide
an estimate of these contributions and demonstrate how one can introduce corresponding
corrections to our NLO + NLL′ results.

Let us consider the parton-to-hadron transition first. One way to add hadronisation
effects to our NLO + NLL′ results is to perform a field-theoretical analysis, based on non-
perturbative matrix elements. However, the jet structure may not only be significantly
affected by hadronisation but also by the UE. The underlying event, unlike hadronisation,
should not be seen as a non-perturbative correction to our Zj matrix elements, but rather
as independent semi-hard processes, contributing with additional final-state partons that
ultimately hadronise. Therefore, the UE cannot be straightforwardly included into the re-
summation framework beyond the simple model of uniform radiation [102, 103]. Moreover,
hadronisation may lead to non-trivial clustering of partons from different processes, i.e.
the hard scattering and the UE, into final-state hadrons. Therefore, we prefer to rely on
dynamical non-perturbative models as implemented in the PYTHIA, HERWIG and SHERPA
MC event generators [52]. Each of these programs is using its own default combination of
non-perturbative models for hadronisation and UE. More precisely, in both the PYTHIA
and SHERPA frameworks the UE is described by the Poisson-based Sjöstrand-Zijl model
presented in [74, 104, 105] whereas in HERWIG the UE is simulated based on the eikonal-
model for soft emissions [106, 107]. The hadronisation effects are simulated according to
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Figure 10. Comparison of parton-level predictions for ungroomed and groomed jet-angularities in
Zj production from PYTHIA, HERWIG (both LO), and SHERPA (MEPS@NLO) with NLO + NLL′

results for pT,jet ∈ [120, 150] GeV. Here λbc stands for the bin centre.
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Figure 11. Comparison of parton-level predictions for ungroomed and groomed jet-angularities in
Zj production from PYTHIA, HERWIG (both LO), and SHERPA (MEPS@NLO) with NLO + NLL′

results for pT,jet ∈ [408, 1500] GeV. Here λbc stands for the bin centre.
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the Lund string model [108, 109] in PYTHIA and according to cluster-fragmentation models
both in HERWIG [110, 111] and SHERPA [73].

In order to estimate the overall impact of non-perturbative effects we consider the ra-
tios of hadron-to-parton-level predictions. To this end, each MC simulation with PYTHIA,
HERWIG and SHERPA is performed twice: first at parton level (without hadronisation and
UE) and second at hadron level (with both UE and hadronisation switched on). This ap-
proach allows us to consider the ratio

(
dσHL/dλ

)
/
(
dσPL/dλ

)
evaluated per λ-bin for each

MC generator. The
(
dσHL/dλ

)
/
(
dσPL/dλ

)
ratios obtained with PYTHIA, HERWIG and

SHERPA are then combined into an envelope, with extreme points given by the maximal
and minimal predictions per given angularity bin. The central value of the envelope is
determined by the respective arithmetic mean value. The resulting ratios, together with
their uncertainties are shown in figures 12(a) and (b), differential in λ1

α, for the two repre-
sentative pT,jet bins, respectively. Experimental studies of jet structure may be based on
all final-state particles, i.e. jet constituents, or purely on the tracks left by charged hadrons
only. Therefore, it is convenient to consider two types of

(
dσHL/dλ

)
/
(
dσPL/dλ

)
ratios: the

first one where all final-state hadrons in the jet are considered (red solid areas in figure 12)
and the second one where only the charged jet constituents are used in the evaluation of the
angularities (blue hatched areas). We note that the shape and the size of non-perturbative
corrections in the two cases are rather similar. By comparing figures 12(a) and (b), we ob-
serve that the behaviour of the non-perturbative correction factors obtained here feature all
the expected properties. The overall size of the non-perturbative corrections decreases as
the transverse momentum increases, in line with our expectation for IRC safe observables.
This remains true for the charged-hadrons only case, despite IRC unsafety. Applying Soft-
Drop typically reduces the size and the onset of non-perturbative corrections, although this
feature is less prominent in the LHA case, for which non-perturbative corrections remain
rather large also for groomed jets.

Finally, we use the results in figure 12 to correct our NLO + NLL′ predictions for
non-perturbative effects. In order to do that we take our NLO + NLL′ distributions as in
figures 10 and 11 and multiply them on a per-bin basis by the corresponding central value
of the

(
dσHL/dλ

)
/
(
dσPL/dλ

)
ratios shown in figure 12. The final uncertainty bands are

obtained by summing in quadrature the perturbative and non-perturbative uncertainties.
The NLO + NLL′ + NP distributions, represented by black solid lines, in figures 13

and 14 present the main result of this paper. They feature our NLO + NLL′ perturbative
predictions and include an MC-based estimate of non-perturbative corrections, here for
the case where all hadrons in the jet are considered, for the three angularities λ1

α, for
the two representative transverse momentum bins. Corresponding results for the case
where only charged tracks are considered in the observable calculation are presented in
appendix A.2 in figures 16 and 17. The gray uncertainty bands represent the perturbative,
(µR, µF , xL) variations, and non-perturbative, δNP, systematics added in quadrature. For
comparison, we also report the SHERPA MEPS@NLO hadron-level predictions, red dashed-
dotted lines, including systematic variations of the factorisation and renormalisation scale,
red hatched band. We see a good agreement between the two predictions for the jet Width
and Thrust. We expect that a comparison to upcoming experimental data would find
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Figure 12. Hadron-to-parton-level ratios with associated uncertainties extracted from MC simu-
lations. Results are provided for jet angularities based on all hadrons, and charged hadrons only,
for pT,jet ∈ [120, 150] GeV (a) and pT,jet ∈ [408, 1500] GeV (b).
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Figure 13. Comparison of hadron-level predictions from SHERPA (MEPS@NLO), based on all
final state hadrons, for ungroomed and groomed jet-angularities in Zj production, with pT,jet ∈
[120, 150] GeV, with NLO + NLL′ results corrected for non-perturbative effects. Here λbc stands
for the bin centre.
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Figure 14. Comparison of hadron-level predictions from SHERPA (MEPS@NLO), based on all
final state hadrons, for ungroomed and groomed jet-angularities in Zj production, with pT,jet ∈
[408, 1500] GeV, with NLO + NLL′ results corrected for non-perturbative effects. Here λbc stands
for the bin centre.
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agreement with these distributions. However, the size of the experimental uncertainties
will tell us whether the theoretical calculation needs to be improved, in order to perform
precision phenomenology. In this context, these observables could be exploited to extract
jet properties, such as the flavour, or, even more ambitiously, parameters of the Standard
Model such as couplings and masses. The situation for the LHA distribution is instead in
stark contrast. Here the resummed calculation and event-generator predictions are not in
agreement, especially in the groomed case. This is true both at parton- and hadron-level.
In this case upcoming LHC data may help us to shed light on the discrepancy. The data
may favour the MC prediction, indicating that modelling used in the resummed calculation,
which for instance neglects recoil, is not appropriate. On the other hand, the data may
favour the resummation, indicating the need for a better understanding of the logarithmic
structure that is achieved by the parton-shower models.

We conclude this section by reporting that most of the conclusions reached above, also
hold for smaller jet radii. Explicit resummed and matched results for R0 = 0.4, as well as
their comparison to SHERPA MEPS@NLO predictions, are collected in appendix A.3.

6 Conclusions and outlook

In this paper we have performed a detailed phenomenological analysis of variables that
describe the internal structure of jets produced in association with a Z boson decaying
into muons. Our study has focussed on IRC safe jet angularities that are characterised by
an angular exponent α, the variation of which allows us to probe QCD radiation in differ-
ent ways. In particular, inspired by an upcoming measurement by the CMS collaboration,
we have derived results for α = 1/2, 1, 2. Furthermore, we have considered standard (un-
groomed) and groomed jets. Our grooming algorithm of choice has been SoftDrop, which
is characterised by the momentum fraction parameter zcut and the angular exponent β.
We have shown explicit results for the combination zcut = 0.1, β = 0, corresponding to the
default choice of the CMS collaboration in their ongoing study.

Comparisons between unfolded experimental measurements and accurate first-principle
theoretical predictions can allow us to test, and improve, our description of jet angularities.
These observables are interesting for many reasons. For instance, they can be employed
to distinguish quark-like from gluon-like jets, in a theoretically well-defined way [35–37].
They can also be used to extract Standard Model parameters, such as the strong coupling
constant [38]. Furthermore, jet-angularity measurements can form an important input
to constrain Monte Carlo event generators in general and the tuning of non-perturbative
model parameters in particular [37].

The first part of the paper has been devoted to a detailed comparison of different MC
event generators that provide an increasing sophistication in the way they include fixed-
order matrix elements. In the region of small angularities, where soft radiation, both of
perturbative and non-perturbative origin, dominates, we have confirmed that the spread
in the predictions provided by widely used general-purpose event generators is largely re-
duced when grooming is considered. In our study we have also investigated the impact
of fixed-order corrections to the parton shower. In particular, we have compared LO
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predictions from PYTHIA and HERWIG, to the ones obtained with merged samples from
SHERPA, both at LO and NLO. The inclusion of full NLO QCD corrections in the SHERPA
MEPS@NLO simulations leads to a significant reduction of systematic uncertainties, esti-
mated by consistent variations of the factorisation and renormalisation scales in both the
matrix element and parton-shower components. When comparing to the LO simulations,
we have observed noticeable effects at large values of the angularities, ranging from ∼ 10%
at moderate transverse momentum to ∼ 30% in the high-pT,jet region. This applies to
both, standard and groomed jets. This behaviour is perhaps related to an analogous trend
observed in the inclusive K-factors, which are increasing functions of the jet transverse
momentum. Our findings underline the importance of using state-of-the-art generators
for jet phenomenology, especially when considering processes characterised by fairly large
radiative corrections, as the one considered here, i.e. hadronic Zj production.

The second part of this study has instead focussed on all-order predictions obtained
with resummed perturbation theory at single-logarithmic accuracy. Thanks to a flavour-
dependent matching to fixed-order predictions, we have been able to achieve NLO + NLL′

accuracy. This includes, for the ungroomed case, the resummation of non-global logarithms,
which we perform in the large-Nc limit. The resummed and matched calculations are imple-
mented in the resummation plugin to SHERPA. This allows us to exploit the main features
of the event generation framework, including phase-space integration, matrix-element eval-
uations and matching, obtaining NLO + NLL′ predictions that include fiducial cuts and
can be faithfully compared to unfolded measurements. To this end, we complemented our
perturbative predictions with non-perturbative corrections, derived from MC simulations,
both for angularity measurements based on all or charged-only jet constituents. As ex-
pected, groomed jets benefit from smaller corrections, which however remain rather large
for the λ1

1/2 angularity. Although we have focussed on one particular combination of Soft-
Drop parameters, our resummed calculation is more general. It applies for all β ≥ 0 values
and can be extended to negative β if SoftDrop is used in tagging rather than grooming
mode. If one wanted to consider much smaller values of zcut, in addition the systematic
resummation of related logarithmic corrections should be included. Similarly, for large
values of zcut, power corrections can become important and should be included.

The main deliverable of this paper are NLO + NLL′ predictions for jet angularities
in Z+jets events in proton-proton collisions that can be immediately exploited for data-
theory comparisons. However, this work has already shown us the path towards higher
precision that we need to pursue. In this context, we can identify four complementary
lines of research. First of all, although we do not expect large corrections, one should
improve the accuracy of the resummation, in order to reduce the theoretical uncertainty.
The framework for NNLL calculations has been worked out using SCET, although explicit
results only exist, to the best of our knowledge, for the case α = 2 [98, 112]. Second, it would
be desirable to match the resummation to NNLO distributions. However, we recognise that
this endeavour is much more formidable as it requires calculating Z plus two partons at
NNLO accuracy. Some first steps have however already been taken in this direction [113–
116]. Next, given that the size of non-perturbative corrections can remain large even for
groomed angularities, e.g. for α < 1, it would be interesting to study additional grooming

– 35 –



J
H
E
P
0
7
(
2
0
2
1
)
0
7
6

strategies, such as complementing the SoftDrop procedure with a filtering step [117] or
using the Recursive SoftDrop algorithm [118], although these tools would most likely further
complicate the structure of the analytic resummation. Finally, a SCET framework to
deal with non-perturbative effects has been recently developed [119, 120] and it would
be interesting to quantitatively compare its predictions to the phenomenological model
employed here.

Acknowledgments

We acknowledge many useful discussions with Robin Aggleton, Kaustuv Datta, Alejandro
Gomez Espinosa, Andreas Hinzmann, Christine Angela McLean, Ashely Marie Parker, and
Salvatore Rappoccio.

The work leading to this publication was supported by the German Academic Exchange
Service (DAAD) with funds from the German Federal Ministry of Education and Re-
search (BMBF) and the People Programme (Marie Curie Actions) of the European Union
Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n. 605728
(P.R.I.M.E. Postdoctoral Researchers International Mobility Experience). The work of SC,
SM and OF is supported by Università di Genova under the curiosity-driven grant “Us-
ing jets to challenge the Standard Model of particle physics” and by the Italian Ministry
of Research (MUR) under grant PRIN 20172LNEEZ. SS acknowledges funding from the
European Union’s Horizon 2020 research and innovation programme as part of the Marie
Skłodowska-Curie Innovative Training Network MCnetITN3 (grant agreement no. 722104),
the Fulbright-Cottrell Award and from BMBF (contract 05H18MGCA1). GS is supported
in part by the French Agence Nationale de la Recherche, under grant ANR-15-CE31-0016.

All figures in this paper were created with the Matplotlib [121] and NumPy [122] li-
braries.

– 36 –



J
H
E
P
0
7
(
2
0
2
1
)
0
7
6

A Additional results

In this appendix, we collect supplementary results.

A.1 Numerical effects of the global and non-global soft function for groomed
observables

In figure 15 we show the same results as in figure 4 in the main text, but with grooming.
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Figure 15. Same as figure 4 but with soft-drop grooming using zcut = 0.1, β = 0.

– 37 –



J
H
E
P
0
7
(
2
0
2
1
)
0
7
6

A.2 Hadron-level predictions based on charged particles only

In figures 16 and 17 we provide NLO + NLL′ + NP predictions for the jet angularities
based on the charged jet constituents only for the two considered pT,jet slices, i.e. pT,jet ∈
[120, 150] GeV and pT,jet ∈ [408, 1500] GeV. The corresponding correction factors have
been presented in figure 12 in section 5.2. The predictions are compared to MEPS@NLO
results from SHERPA.

A.3 Hadron-level results for R0 = 0.4 jets

Here we provide results analogous to the ones presented in section 5.2 but for a smaller jet
radius, namely R0 = 0.4 jets. In particular, we show NLO + NLL′ predictions, including
non-perturbative corrections, and compare them to SHERPA MEPS@NLO results. This
is done for the case of all-hadrons in figures 18 and 19 for the two considered transverse
momentum slices, respectively, while in figures 20 and 21 we present corresponding results
based on charged hadrons only.

The comparison yields very similar findings to the R0 = 0.8 case reported in the main
text. However, for the groomed width in the lower transverse momentum slice we here
observe very large non-perturbative corrections (with corresponding large uncertainties).
This signals the breakdown of our approximate treatment for including non-perturbative
corrections. Here we probe a region of phase space close to the parton-shower cutoffs,
below which the Monte Carlo simulations are purely determined by non-perturbative effects
and, consequently, the hadron-to-parton-level ratios get large. This effect becomes more
important as we lower pT,jet and/or the jet radius R0. Its onset can be estimated using
eqs. (5.1) and (5.2).
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Figure 16. Comparison of hadron-level predictions from SHERPA (MEPS@NLO), based on
charged hadrons only, for ungroomed and groomed jet-angularities in Zj production, with pT,jet ∈
[120, 150] GeV, with NLO + NLL′ results corrected for non-perturbative effects. Here λbc stands
for the bin centre.
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Figure 17. Comparison of hadron-level predictions from SHERPA (MEPS@NLO), based on
charged hadrons only, for ungroomed and groomed jet-angularities in Zj production, with pT,jet ∈
[408, 1500] GeV, with NLO + NLL′ results corrected for non-perturbative effects. Here λbc stands
for the bin centre.
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Figure 18. Same as figure 13 but for R0 = 0.4 jets.
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Figure 19. Same as figure 14 but for R0 = 0.4 jets.
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Figure 20. Same as figure 16 but for R0 = 0.4 jets.
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Figure 21. Same as figure 17 but for R0 = 0.4 jets.
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