Skip to main content

Advertisement

SpringerLink
On the viability of regular black holes
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 04 July 2018

On the viability of regular black holes

  • Raúl Carballo-Rubio1,2,
  • Francesco Di Filippo1,2,
  • Stefano Liberati1,2,
  • Costantino Pacilio1,2 &
  • …
  • Matt Visser3 

Journal of High Energy Physics volume 2018, Article number: 23 (2018) Cite this article

  • 613 Accesses

  • 70 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The evaporation of black holes raises a number of conceptual issues, most of them related to the final stages of evaporation, where the interplay between the central singularity and Hawking radiation cannot be ignored. Regular models of black holes replace the central singularity with a nonsingular spacetime region, in which an effective classical geometric description is available. It has been argued that these models provide an effective, but complete, description of the evaporation of black holes at all times up to their eventual disappearance. However, here we point out that known models fail to be self-consistent: the regular core is exponentially unstable against perturbations with a finite timescale, while the evaporation time is infinite, therefore making the instability impossible to prevent. We also discuss how to overcome these difficulties, highlighting that this can be done only at the price of accepting that these models cannot be fully predictive regarding the final stages of evaporation.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

    ADS  Google Scholar 

  3. D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S.D. Mathur, The information paradox: A pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. P. Chen, Y.C. Ong and D.-h. Yeom, Black Hole Remnants and the Information Loss Paradox, Phys. Rept. 603 (2015) 1 [arXiv:1412.8366] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Marolf, The Black Hole information problem: past, present and future, Rept. Prog. Phys. 80 (2017) 092001 [arXiv:1703.02143] [INSPIRE].

  7. W.G. Unruh and R.M. Wald, Information Loss, Rept. Prog. Phys. 80 (2017) 092002 [arXiv:1703.02140] [INSPIRE].

  8. A. Ashtekar and M. Bojowald, Black hole evaporation: A paradigm, Class. Quant. Grav. 22 (2005) 3349 [gr-qc/0504029] [INSPIRE].

  9. M. Bojowald, Information loss, made worse by quantum gravity?, Front. Phys. 3 (2015) 33.

    Article  Google Scholar 

  10. M. Bojowald, S. Brahma and J.D. Reyes, Covariance in models of loop quantum gravity: Spherical symmetry, Phys. Rev. D 92 (2015) 045043 [arXiv:1507.00329] [INSPIRE].

  11. S.A. Hayward, Formation and evaporation of regular black holes, Phys. Rev. Lett. 96 (2006) 031103 [gr-qc/0506126] [INSPIRE].

  12. K.A. Bronnikov, V.N. Melnikov and H. Dehnen, Regular black holes and black universes, Gen. Rel. Grav. 39 (2007) 973 [gr-qc/0611022] [INSPIRE].

  13. V.P. Frolov and G.A. Vilkovisky, Quantum gravity removes classical singularities and shortens the life of black holes, in proceedings of The Second Marcel Grossmann Meeting on the Recent Developments of General Relativity (In Honor of Albert Einstein), Trieste, Italy, 5-11 July 1979, p. 455, [INSPIRE].

  14. V.P. Frolov and G.A. Vilkovisky, Spherically Symmetric Collapse in Quantum Gravity, Phys. Lett. B 106 (1981) 307 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. V.P. Frolov and I.D. Novikov, editors, Black hole physics: Basic concepts and new developments, (1998), [INSPIRE].

  16. V.P. Frolov, Information loss problem and a ‘black hole’ model with a closed apparent horizon, JHEP 05 (2014) 049 [arXiv:1402.5446] [INSPIRE].

  17. J.M. Bardeen. Non-singular general-relativistic gravitational collapse, in Proceedings of International Conference GR5, Tbilisi, USSR, 1968, p. 174.

  18. A. Borde, Regular black holes and topology change, Phys. Rev. D 55 (1997) 7615 [gr-qc/9612057] [INSPIRE].

  19. I. Dymnikova, Vacuum nonsingular black hole, Gen. Rel. Grav. 24 (1992) 235 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. I. Dymnikova, Cosmological term as a source of mass, Class. Quant. Grav. 19 (2002) 725 [gr-qc/0112052] [INSPIRE].

  21. S. Ansoldi, Spherical black holes with regular center: A review of existing models including a recent realization with Gaussian sources, in Conference on Black Holes and Naked Singularities Milan, Italy, May 10-12, 2007, 2008, arXiv:0802.0330 [INSPIRE].

  22. T. De Lorenzo, C. Pacilio, C. Rovelli and S. Speziale, On the Effective Metric of a Planck Star, Gen. Rel. Grav. 47 (2015) 41 [arXiv:1412.6015] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. V.P. Frolov, Notes on nonsingular models of black holes, Phys. Rev. D 94 (2016) 104056 [arXiv:1609.01758] [INSPIRE].

  24. V.P. Frolov and A. Zelnikov, Quantum radiation from an evaporating nonsingular black hole, Phys. Rev. D 95 (2017) 124028 [arXiv:1704.03043] [INSPIRE].

  25. C.W. Misner and D.H. Sharp, Relativistic equations for adiabatic, spherically symmetric gravitational collapse, Phys. Rev. 136 (1964) B571 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. W.C. Hernandez and C.W. Misner, Observer Time as a Coordinate in Relativistic Spherical Hydrodynamics, Astrophys. J. 143 (1966) 452 [INSPIRE].

    Article  ADS  Google Scholar 

  27. S.A. Hayward, Gravitational energy in spherical symmetry, Phys. Rev. D 53 (1996) 1938 [gr-qc/9408002] [INSPIRE].

  28. V. Cardoso, J.L. Costa, K. Destounis, P. Hintz and A. Jansen, Quasinormal modes and Strong Cosmic Censorship, Phys. Rev. Lett. 120 (2018) 031103 [arXiv:1711.10502] [INSPIRE].

  29. S. Hod, Strong cosmic censorship in charged black-hole spacetimes: As strong as ever, arXiv:1801.07261 [INSPIRE].

  30. O.J.C. Dias, F.C. Eperon, H.S. Reall and J.E. Santos, Strong cosmic censorship in de Sitter space, Phys. Rev. D 97 (2018) 104060 [arXiv:1801.09694] [INSPIRE].

  31. S. Hod, Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes, Phys. Lett. B 780 (2018) 221 [arXiv:1803.05443] [INSPIRE].

  32. M. Simpson and R. Penrose, Internal instability in a Reissner-Nordström black hole, Int. J. Theor. Phys. 7 (1973) 183 [INSPIRE].

    Article  Google Scholar 

  33. E. Poisson and W. Israel, Inner-horizon instability and mass inflation in black holes, Phys. Rev. Lett. 63 (1989) 1663 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Poisson and W. Israel, Eschatology of the Black Hole Interior, Phys. Lett. B 233 (1989) 74 [INSPIRE].

  35. E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. C. Barrabes, W. Israel and E. Poisson, Collision of light-like shells and mass inflation in rotating black holes, Class. Quant. Grav. 7 (1990) L273.

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Ori, Inner structure of a charged black hole: An exact mass-inflation solution, Phys. Rev. Lett. 67 (1991) 789 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. M. Dafermos, The interior of charged black holes and the problem of uniqueness in general relativity, Commun. Pure Appl. Math. 58 (2005) 0445.

    Article  MathSciNet  Google Scholar 

  39. A.J.S. Hamilton and P.P. Avelino, The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes, Phys. Rept. 495 (2010) 1 [arXiv:0811.1926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Markovic and E. Poisson, Classical stability and quantum instability of black hole Cauchy horizons, Phys. Rev. Lett. 74 (1995) 1280 [gr-qc/9411002] [INSPIRE].

  41. E.G. Brown, R.B. Mann and L. Modesto, Mass Inflation in the Loop Black Hole, Phys. Rev. D 84 (2011) 104041 [arXiv:1104.3126] [INSPIRE].

  42. T. Dray and G. ’t Hooft, The Effect of Spherical Shells of Matter on the Schwarzschild Black Hole, Commun. Math. Phys. 99 (1985) 613 [INSPIRE].

  43. I.H. Redmount, Blue-Sheet Instability of Schwarzschild Wormholes, Prog. Theor. Phys. 73 (1985) 1401.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. S.K. Blau, ’t Hooft Dray Geometries and the Death of White Holes, Phys. Rev. D 39 (1989) 2901 [INSPIRE].

  45. C. Barceló, R. Carballo-Rubio and L.J. Garay, Black holes turn white fast, otherwise stay black: no half measures, JHEP 01 (2016) 157 [arXiv:1511.00633] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. D. Núñez, H.P. de Oliveira and J. Salim, Dynamics and collision of massive shells in curved backgrounds, Class. Quant. Grav. 10 (1993) 1117 [gr-qc/9302003] [INSPIRE].

  47. R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. 1. Scalar and gravitational perturbations, Phys. Rev. D 5 (1972) 2419 [INSPIRE].

  48. R.H. Price, Nonspherical Perturbations of Relativistic Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass Fields, Phys. Rev. D 5 (1972) 2439 [INSPIRE].

  49. C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 1. Linearized perturbations, Phys. Rev. D 49 (1994) 883 [gr-qc/9307009] [INSPIRE].

  50. C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions: 2. Nonlinear evolution, Phys. Rev. D 49 (1994) 890 [gr-qc/9307010] [INSPIRE].

  51. M. Dafermos and I. Rodnianski, A proof of Price’s law for the collapse of a selfgravitating scalar field, Invent. Math. 162 (2005) 381.

  52. E. Alesci and L. Modesto, Particle Creation by Loop Black Holes, Gen. Rel. Grav. 46 (2014) 1656 [arXiv:1101.5792] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. P. Bueno and P.A. Cano, Universal black hole stability in four dimensions, Phys. Rev. D 96 (2017) 024034 [arXiv:1704.02967] [INSPIRE].

  54. A. Fabbri, D.J. Navarro and J. Navarro-Salas, Evaporation of near extremal Reissner-Nordström black holes, Phys. Rev. Lett. 85 (2000) 2434 [hep-th/0004027] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. C. Barceló, S. Liberati, S. Sonego and M. Visser, Minimal conditions for the existence of a Hawking-like flux, Phys. Rev. D 83 (2011) 041501 [arXiv:1011.5593] [INSPIRE].

  56. C. Barceló, S. Liberati, S. Sonego and M. Visser, Hawking-like radiation from evolving black holes and compact horizonless objects, JHEP 02 (2011) 003 [arXiv:1011.5911] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  57. K. Falls and D.F. Litim, Black hole thermodynamics under the microscope, Phys. Rev. D 89 (2014) 084002 [arXiv:1212.1821] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy

    Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati & Costantino Pacilio

  2. INFN Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy

    Raúl Carballo-Rubio, Francesco Di Filippo, Stefano Liberati & Costantino Pacilio

  3. School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand

    Matt Visser

Authors
  1. Raúl Carballo-Rubio
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Francesco Di Filippo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stefano Liberati
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Costantino Pacilio
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Matt Visser
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Francesco Di Filippo.

Additional information

ArXiv ePrint: 1805.02675

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carballo-Rubio, R., Di Filippo, F., Liberati, S. et al. On the viability of regular black holes. J. High Energ. Phys. 2018, 23 (2018). https://doi.org/10.1007/JHEP07(2018)023

Download citation

  • Received: 16 May 2018

  • Accepted: 25 June 2018

  • Published: 04 July 2018

  • DOI: https://doi.org/10.1007/JHEP07(2018)023

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Models of Quantum Gravity
  • Spacetime Singularities
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.