Skip to main content
Log in

Particle creation by loop black holes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the black hole particle production in a regular spacetime metric obtained in a minisuperspace approach to loop quantum gravity. In different previous papers the static solution was obtained and shown to be singularity-free and self-dual. In this paper expanding a previous study of the black hole dynamics we repeat the Hawking analysis which leads to a thermal flux of particles at the future infinity. The evaporation time is infinite and the unitarity is recovered due to the regularity of the spacetime and to the characteristic behavior of the surface gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  4. Hawking, S.W.: Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ashtekar, A., Bojowald, M.: Class. Quantum Gravity 22, 3349 (2005). [arXiv:gr-qc/0504029]

  6. Hossenfelder, S., Smolin, L.: Conservative solutions to the black hole information problem. Phys. Rev. D 81, 064009 (2010). [arXiv:0901.3156 [gr-qc]]

  7. Ashtekar, A., Taveras, V., Varadarajan, M.: Phys. Rev. Lett. 100, 211302 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ashtekar, A., Bojowald, M.: Class. Quantum Gravity 23, 391 (2006). [arXiv:gr-qc/0509075]

  9. Modesto, L.: Phys. Rev. D 70, 124009 (2004). [gr-qc/0407097]

  10. Modesto, L.: Class. Quantum Gravity 23, 5587 (2006). [arXiv:gr-qc/0509078]

  11. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  13. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  14. Bojowald, M.: Living Rev. Rel. 8, 11 (2005). [arXiv:gr-qc/0601085]

  15. Modesto, L.: Int. J. Theor. Phys. Space-Time structure of loop quantum black hole. Gen. Relativ. Quant. Cosmol (2008). arXiv:0811.2196 [gr-qc]

  16. Modesto, L.: Int. J. Theor. Phys. 45, 2235–2246 (2006). [arXiv:gr-qc/0411032]

  17. Modesto, L.: Adv. High Energy Phys. 2008, 459290 (2008). [gr-qc/0611043]

  18. Modesto, L., Premont-Schwarz, I.: Phys. Rev. D 80, 064041 (2009). [arXiv:0905.3170 [hep-th]]

  19. Husain, V., Winkler, O.: Class. Quantum Gravity 22, L127 (2005). [gr-qc/0410125]

  20. Bohmer, C.G., Vandersloot, K.: Loop quantum dynamics of the Schwarzschild interior. Phys. Rev. D 76, 104030 (2007)

    Google Scholar 

  21. Chiou, D.W.: Phys. Rev. D 78, 064040 (2008). [arXiv:0807.0665]

  22. Husain, V.: Critical behaviour in quantum gravitational collapse. [arXiv:0808.0949 [gr-qc]]

  23. Ziprick, J., Kunstatter, G.: Quantum corrected spherical collapse: a phenomenological framework. Phys. Rev. D 82, 044031 (2010). [arXiv:1004.0525 [gr-qc]]

  24. Kunstatter, G., Louko, J., Peltola, A.: Phys. Rev. D 81, 024034 (2010). [arXiv:0910.3625 [gr-qc]]

  25. Husain, V., Mann, R.B.: Class. Quantum Gravity 26, 075010 (2009). [arXiv:0812.0399 [gr-qc]]

  26. Bojowald, M., Goswami, R., Maartens, R., Singh, P.: Phys. Rev. Lett. 95, 091302 (2005). [gr-qc/0503041]

    Google Scholar 

  27. Tippett, B.K., Husain, V.: Phys. Rev. D 84, 104031 (2011). [arXiv:1106.1118 [gr-qc]]

  28. Nicolini, P.: J. Phys. A 38, L631 (2005). [arXiv:hep-th/0507266]

  29. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 632, 547 (2006). [arXiv:gr-qc/0510112]

  30. Ansoldi, S., Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 645, 261 (2007). [arXiv:gr-qc/0612035]

  31. Spallucci, E., Smailagic, A., Nicolini, P.: Phys. Lett. B 670, 449 (2009). [arXiv:0801.3519 [hep-th]]

  32. Nicolini, P., Spallucci, E.: Class. Quantum Gravity 27, 015010 (2010). [arXiv:0902.4654 [gr-qc]]

  33. Nicolini, P., Rinaldi, M.: A minimal length versus the Unruh effect. Phys. Lett. B 695, 303 (2011). [arXiv:0910.2860 [hep-th]]

  34. Bleicher, M., Nicolini, P.: Large extra dimensions and small black holes at the LHC. J. Phys. Conf. Ser. 237, 012008 (2010). [arXiv:1001.2211 [hep-ph]]

    Google Scholar 

  35. Batic, D., Nicolini, P: Fuzziness at the horizon. Phys. Lett. B 692, 32 (2010). [arXiv:1001.1158 [gr-qc]]

  36. Myung, Y.S., Kim, Y.-W., Park, Y.-J.: Thermodynamics of regular black hole. Gen. Relativ. Gravit. 41, 1051 (2009). [arXiv:0708.3145 [gr-qc]]

    Google Scholar 

  37. Myung, Y.S., Kim, Y.W., Park, Y.J.: Phys. Lett. B 656, 221–225 (2007). [gr-qc/0702145]

    Google Scholar 

  38. Nicolini, P.: Noncommutative black holes, the final appeal to quantum gravity: a review. Int. J. Mod. Phys. A 24, 1229 (2009). [arXiv:0807.1939 [hep-th]]

  39. Banerjee, R., Majhi, B.R., Samanta, S.: Phys. Rev. D 77, 124035 (2008)

    Google Scholar 

  40. Banerjee, R., Majhi, B.R., Modak, S.K.: Noncommutative Schwarzschild black hole and area law. Class. Quant. Grav. 26, 085010 (2009). [arXiv:0802.2176 [hep-th]]

    Google Scholar 

  41. Smailagic, A., Spallucci, E.: Kerrr’ black hole: the Lord of the String. Phys. Lett. B 688, 82 (2010). [arXiv:1003.3918 [hep-th]]

  42. Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010). [arXiv:1005.5605 [gr-qc]]

  43. Nicolini, P.: Int. J. Mod. Phys. A 24, 1229 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 632, 547 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Reuter, M., Bonanno, A.: Phys. Rev. D 62, 043008 (2000). [hep-th/0002196]

  46. Reuter, M., Bonanno, A.: Phys. Rev. D 73, 083005 (2006). [hep-th/0602159]

  47. Ziprick, J., Kunstatter, G.: Phys. Rev. D 80, 024032 (2009) [arXiv:0902.3224 [gr-qc]]

  48. Peltola, A., Kunstatter, G.: Phys. Rev. D 80, 044031 (2009). [arXiv:0902.1746 [gr-qc]]

  49. Caravelli, F. Modesto, L.: Spinning loop black holes. Class. Quant. Grav. 27, 245022 (2010). [arXiv:1006.0232 [gr-qc]]

    Google Scholar 

  50. Gambini, R., Pullin, J.: Phys. Rev. Lett. 110, 211301 (2013) [arXiv:1302.5265 [gr-qc]]

    Google Scholar 

  51. Fabbri, A., Navarro-Salas, J.: Modeling black hole evaporation. Imperial College Press (2005)

  52. Bardeen, J.: GR5, abstracts of the 5th international conference on gravitation and the theory of relativity, Fock, V.A. et al. (eds.) Tbilisi University Press (1968)

  53. Frolov, V.P., Markov, M.A., Mukhanov, V.F.: Phys. Lett. B 216, 272 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  54. Frolov, V.P., Markov, M.A., Mukhanov, V.F.: Phys. Rev. D 41, 383 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  55. Balbinot, R., Poisson, E.: Phys. Rev. D 41, 395 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  56. Aurilia, A., Balbinot, R., Spallucci, E.: Phys. Lett. B 262, 222 (1991)

    Article  ADS  Google Scholar 

  57. Dymnikova, I.: Gen. Relativ. Gravit. 24, 235 (1992)

  58. Dymnikova, I.: Int. J. Mod. Phys. D 5, 529 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  59. Dymnikova, I.: Class. Quantum Gravity 19, 725 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Dymnikova, I.: Int. J. Mod. Phys. D 12, 1015 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Mars, M., Martín-Prats, M.M., Senovilla, J.M.M.: Class. Quantum Gravity 13, L51 (1996)

    Article  ADS  MATH  Google Scholar 

  62. Borde, A.: Phys. Rev. D 55, 7615 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  63. Ayón-Beato, E., Garciá, A.: Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  64. Mbonye, M.R., Kazanas, D.: Phys. Rev. D 72, 024016 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  65. Hayward, S.A.: Phys. Rev. Lett. 96, 031103 (2006). [arXiv:gr-qc/0506126]

    Google Scholar 

  66. Nicolini, P.: J. Phys. A 38, L631 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. Ansoldi, S., Nicolini, P., Smailagic, A., Spallucci, E.: Phys. Lett. B 645, 261 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Spallucci, E., Smailagic, A., Nicolini, P.: Holes. Phys. Lett. B 670, 449 (2009)

    Google Scholar 

  69. Nicolini, P., Spallucci, E.: Noncommutative geometry inspired wormholes and dirty black holes. Class. Quant. Grav. 27, 015010 (2010). [arXiv:0902.4654 [gr-qc]]

    Google Scholar 

  70. Hossenfelder, S., Modesto, L., Premont-Schwarz, I.: Phys. Rev. D 81, 044036 (2010). [arXiv:0912.1823 [gr-qc]]

  71. Ashtekar, A.: Phys. Rev. Lett. 57(18), 2244–2247 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  72. Mercuri, S.: Introduction to loop quantum gravity. PoS ISFTG 016 (2009). [arXiv:1001.1330 [gr-qc]]

  73. Vaidya, P.C.: Proc. Indian Acad. Sci. A 33, 264 (1951)

    ADS  MATH  MathSciNet  Google Scholar 

  74. Hayward, S.A.: Phys. Rev. D 49, 6467 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  75. Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Hayward, S.A.: Phys. Rev. 70, 104027 (2004)

    MathSciNet  Google Scholar 

  77. Hayward, S.A.: Phys. Rev. Lett. 93, 251101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  78. Ashtekar, A., Krishnan, B.: Phys. Rev. Lett 89, 261101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  79. Ashtekar, A., Krishnan, B.: Phys. Rev. D 68, 104030 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  80. Wald, R.M.: Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics. University of Chicago Press, Chicago, p. 205 (1994)

  81. Hiscock, W.A.: Phys. Rev. D 23, 2813–2823 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  82. Wald, R.M.: Commun. Math. Phys. 45, 9–34 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  83. Alesci, E., Modesto, L.: in preparation

  84. Callan, C.G., Jr., Giddings, S.B., Harvey, J. A., Strominger, A.: Phys. Rev. D 45, 1005 (1992)

    Google Scholar 

  85. Christodoulou, D.: Commun. Math. Phys. 109, 613 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. Barcelo, C., Liberati, S., Sonego, S., Visser, M.: Phys. Rev. D 77, 044032 (2008). [arXiv:0712.1130 [gr-qc]]

Download references

Acknowledgments

We wish to thank Thomas Thiemann and Alexander Stottmeister for many useful discussions. E. Alesci would like to thank the Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada for the kind hospitality during a period of work on this project. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Alesci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alesci, E., Modesto, L. Particle creation by loop black holes. Gen Relativ Gravit 46, 1656 (2014). https://doi.org/10.1007/s10714-013-1656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-013-1656-0

Keywords

Navigation