Skip to main content
Log in

On the effective metric of a Planck star

  • Editor's Choice (Research Article)
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Spacetime metrics describing ‘non-singular’ black holes are commonly studied in the literature as effective modification to the Schwarzschild solution that mimic quantum gravity effects removing the central singularity. Here we point out that to be physically plausible, such metrics should also incorporate the 1-loop quantum corrections to the Newton potential and a non-trivial time delay between an observer at infinity and an observer in the regular center. We present a modification of the well-known Hayward metric that features these two properties. We discuss bounds on the maximal time delay imposed by conditions on the curvature, and the consequences for the weak energy condition, in general violated by the large transversal pressures introduced by the time delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. It is worth mentioning that the metric proposed by Bardeen in [5] does reproduce the required behaviour of the newtonian potential. On the other hand, as well as all the line elements proposed, it suffers for the time delay problem.

  2. In the numerical plots, we use the value \(\beta =41/10\pi \).

References

  1. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (2010)

    Google Scholar 

  2. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time, vol. 1, 20th edn. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  3. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). gr-qc/0602086

  4. Rovelli, C., Vidotto, F.: Planck Stars. (2014). arXiv:1401.6562

  5. Bardeen, J.M.: Non-singular general-relativistic gravitational collapse. In: Proceedings of International Conference GR5, Tbilisi, p. 174 (1968)

  6. Frolov, V.P., Vilkovisky, G.: Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106, 307–313 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. Roman, T.A., Bergmann, P.G.: Stellar collapse without singularities? Phys. Rev. D 28, 1265–1277 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mazur, P. O., and Mottola, E.: Gravitational condensate stars: An alternative to black holes, gr-qc/0109035

  9. Dymnikova, I.: Cosmological term as a source of mass. Class. Quantum Gravity 19, 725–740 (2002). gr-qc/0112052

  10. Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 31103 (2006). gr-qc/0506126

  11. Nicolini, P., Smailagic, A., Spallucci, E.: Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547 (2006). gr-qc/0510112

  12. Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:1002.0260

  13. Modesto, L., Moffat, J.W., Nicolini, P.: Black holes in an ultraviolet complete quantum gravity. Phys. Lett. B 695, 397 (2011). arXiv:1010.0680

  14. Frolov, V.P.: Information loss problem and a ‘black hole’ model with a closed apparent horizon. (2014). arXiv:1402.5446

  15. Haggard, H.M., Rovelli, C.: Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling. arXiv:1407.0989

  16. Mersini-Houghton, L.: Backreaction of hawking radiation on a gravitationally collapsing star I: Black holes? PLB30496 Phys. Lett. B (2014). arXiv:1406.1525

  17. Frolov, V.P.: Do Black Holes Exist? arXiv:1411.6981

  18. Ansoldi, S.: Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources. (2008). arXiv:0802.0330

  19. Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 67, 084033 (2003). hep-th/0211072

  20. Dymnikova, I.: Vacuum nonsingular black hole. Gen. Relativ. Gravit 24, 235–242 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  21. Borde, A.: Regular black holes and topology change. Phys. Rev. D 55, 7615–7617 (1997). gr-qc/9612057

  22. Frolov, V.P., Markov, M., Mukhanov, V.F.: Through a black hole into a new universe? Phys. Lett. B 216, 272–276 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  24. Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quantum Gravity 22, 3349–3362 (2005). gr-qc/0504029

  25. Bianchi, E., De Lorenzo, T., Smerlak, M.: Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. arXiv:1409.0144

  26. Perez, A.: No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. arXiv:1410.7062

  27. Barrau, A., Rovelli, C.: Planck star phenomenology. (2014). arXiv:1404.5821

  28. Barrau, A., Rovelli, C., Vidotto, F.: Fast radio bursts and white hole signals. arXiv:1409.4031

  29. Donoghue, J.F.: The effective field theory treatment of quantum gravity. In: Proceedings of AIP Conference 1483, 73–94 (2012). arXiv:1209.3511

Download references

Acknowledgments

We kindly acknowledge support from the A*MIDEX project ANR-11-IDEX-0001-02, as well as the Samy Maroun Center For Space, Time and the Quantum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Speziale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Lorenzo, T., Pacilio, C., Rovelli, C. et al. On the effective metric of a Planck star. Gen Relativ Gravit 47, 41 (2015). https://doi.org/10.1007/s10714-015-1882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1882-8

Keywords

Navigation