Skip to main content

On the validity of the effective field theory approach to SM precision tests

A preprint version of the article is available at arXiv.

Abstract

We discuss the conditions for an effective field theory (EFT) to give an adequate low-energy description of an underlying physics beyond the Standard Model (SM). Starting from the EFT where the SM is extended by dimension-6 operators, experimental data can be used without further assumptions to measure (or set limits on) the EFT parameters. The interpretation of these results requires instead a set of broad assumptions (e.g. power counting rules) on the UV dynamics. This allows one to establish, in a bottom-up approach, the validity range of the EFT description, and to assess the error associated with the truncation of the EFT series. We give a practical prescription on how experimental results could be reported, so that they admit a maximally broad range of theoretical interpretations. Namely, the experimental constraints on dimension-6 operators should be reported as functions of the kinematic variables that set the relevant energy scale of the studied process. This is especially important for hadron collider experiments where collisions probe a wide range of energy scales.

References

  1. W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    ADS  Article  Google Scholar 

  2. K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev. D 48 (1993) 2182 [INSPIRE].

    ADS  Google Scholar 

  3. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  4. M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].

  5. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4 pis in strongly coupled supersymmetry, Phys. Lett. B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].

  6. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

  7. A. Pomarol, Higgs physics, talk given at 2014 European School of High-Energy Physics (ESHEP 2014), June 18-July 1, Garderen, The Netherlands (2014), arXiv:1412.4410 [INSPIRE].

  8. G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961].

    Article  MATH  Google Scholar 

  9. C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].

  10. M.B. Einhorn and J. Wudka, The bases of effective field theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP 05 (2015) 024 [arXiv:1502.02570] [INSPIRE].

    ADS  Article  Google Scholar 

  12. L. Berthier and M. Trott, Consistent constraints on the standard model effective field theory, JHEP 02 (2016) 069 [arXiv:1508.05060] [INSPIRE].

    ADS  Article  Google Scholar 

  13. A. Greljo, G. Isidori, J.M. Lindert and D. Marzocca, Pseudo-observables in electroweak Higgs production, Eur. Phys. J. C 76 (2016) 158 [arXiv:1512.06135] [INSPIRE].

    ADS  Article  Google Scholar 

  14. J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron tt asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].

    ADS  Article  Google Scholar 

  15. A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].

    ADS  Google Scholar 

  16. C. Englert and M. Spannowsky, Effective theories and measurements at colliders, Phys. Lett. B 740 (2015) 8 [arXiv:1408.5147] [INSPIRE].

    ADS  Article  Google Scholar 

  17. A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].

    ADS  Google Scholar 

  18. A. David and G. Passarino, Through precision straits to next standard model heights, Rev. Phys. 1 (2016) 13 [arXiv:1510.00414] [INSPIRE].

    Article  Google Scholar 

  19. F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].

    ADS  Google Scholar 

  20. F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].

    Article  MATH  Google Scholar 

  21. G. Passarino, NLO inspired effective lagrangians for Higgs physics, Nucl. Phys. B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs effective theory: extended Higgs sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP 04 (2015) 078 [arXiv:1412.8480] [INSPIRE].

    Article  Google Scholar 

  24. C.-W. Chiang and R. Huo, Standard model effective field theory: integrating out a generic scalar, JHEP 09 (2015) 152 [arXiv:1505.06334] [INSPIRE].

    ADS  Article  Google Scholar 

  25. R. Huo, Standard model effective field theory: integrating out vector-like fermions, JHEP 09 (2015) 037 [arXiv:1506.00840] [INSPIRE].

    Article  Google Scholar 

  26. R. Huo, Effective field theory of integrating out sfermions in the MSSM: complete one-loop analysis, arXiv:1509.05942 [INSPIRE].

  27. J. Brehmer, A. Freitas, D. Lopez-Val and T. Plehn, Pushing Higgs effective theory to its limits, Phys. Rev. D 93 (2016) 075014 [arXiv:1510.03443] [INSPIRE].

    ADS  Google Scholar 

  28. J.D. Wells and Z. Zhang, Effective theories of universal theories, JHEP 01 (2016) 123 [arXiv:1510.08462] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. A. Biekötter, J. Brehmer and T. Plehn, Pushing Higgs effective theory over the edge, arXiv:1602.05202 [INSPIRE].

  30. M. Boggia, R. Gomez-Ambrosio and G. Passarino, Low energy behaviour of standard model extensions, JHEP 05 (2016) 162 [arXiv:1603.03660] [INSPIRE].

    ADS  Article  Google Scholar 

  31. J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].

  32. D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP 05 (2015) 009 [arXiv:1502.04701] [INSPIRE].

    ADS  Article  Google Scholar 

  33. S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge U.K. (2005).

  34. A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].

    ADS  Article  Google Scholar 

  35. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

  36. D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, arXiv:1603.03064 [INSPIRE].

  37. R. Alonso, E.E. Jenkins and A.V. Manohar, A geometric formulation of Higgs effective field theory: measuring the curvature of scalar field space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. C. Degrande et al., Effective field theory: a modern approach to anomalous couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    ADS  Article  Google Scholar 

  40. T. Appelquist and M.S. Chanowitz, Unitarity bound on the scale of fermion mass generation, Phys. Rev. Lett. 59 (1987) 2405 [Erratum ibid. 60 (1988) 1589] [INSPIRE].

  41. F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev. D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].

  42. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    ADS  Article  Google Scholar 

  43. J.A. Dror, M. Farina, E. Salvioni and J. Serra, Strong tW scattering at the LHC, JHEP 01 (2016) 071 [arXiv:1511.03674] [INSPIRE].

    ADS  Article  Google Scholar 

  44. O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the standard model effective field theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].

    ADS  Article  Google Scholar 

  45. O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].

    ADS  Google Scholar 

  46. G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].

    ADS  Google Scholar 

  47. S. Willenbrock and C. Zhang, Effective field theory beyond the standard model, Ann. Rev. Nucl. Part. Sci. 64 (2014) 83 [arXiv:1401.0470] [INSPIRE].

    ADS  Article  Google Scholar 

  48. B. Henning, X. Lu and H. Murayama, How to use the standard model effective field theory, JHEP 01 (2016) 023 [arXiv:1412.1837] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  50. J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].

    ADS  Article  Google Scholar 

  51. B. Henning, X. Lu and H. Murayama, What do precision Higgs measurements buy us?, arXiv:1404.1058 [INSPIRE].

  52. R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to \( h\to b\overline{b} \) and \( h\to \tau \overline{\tau} \) decays in the standard model dimension-6 EFT: four-fermion operators and the large-m t limit, JHEP 05 (2016) 080 [arXiv:1512.02508] [INSPIRE].

    ADS  Article  Google Scholar 

  53. J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].

    ADS  Google Scholar 

  54. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  55. J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].

    ADS  Article  Google Scholar 

  56. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is there room for CP-violation in the top-Higgs sector?, Phys. Rev. D 94 (2016) 016002 [arXiv:1603.03049] [INSPIRE].

    Google Scholar 

  57. M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and k-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(hγ γ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].

    ADS  Article  Google Scholar 

  59. C. Hartmann and M. Trott, Higgs decay to two photons at one loop in the standard model effective field theory, Phys. Rev. Lett. 115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].

    ADS  Article  Google Scholar 

  60. S. Dawson, I.M. Lewis and M. Zeng, Usefulness of effective field theory for boosted Higgs production, Phys. Rev. D 91 (2015) 074012 [arXiv:1501.04103] [INSPIRE].

    ADS  Google Scholar 

  61. D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev. D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].

    ADS  Google Scholar 

  62. A. Drozd, J. Ellis, J. Quevillon and T. You, Comparing EFT and exact one-loop analyses of non-degenerate stops, JHEP 06 (2015) 028 [arXiv:1504.02409] [INSPIRE].

    ADS  Article  Google Scholar 

  63. R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD corrections to Higgs pair production including dimension-6 operators, JHEP 09 (2015) 092 [arXiv:1504.06577] [INSPIRE].

    ADS  Article  Google Scholar 

  64. M. Grazzini, A. Ilnicka, M. Spira and M. Wiesemann, BSM effects on the Higgs transverse-momentum spectrum in an EFT approach, PoS (EPS-HEP2015) 144 [arXiv:1511.08059] [INSPIRE].

  65. K. Mimasu, V. Sanz and C. Williams, Higher Order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons, arXiv:1512.02572 [INSPIRE].

  66. A. Drozd, J. Ellis, J. Quevillon and T. You, The universal one-loop effective action, JHEP 03 (2016) 180 [arXiv:1512.03003] [INSPIRE].

    ADS  Article  Google Scholar 

  67. J.D. Wells and Z. Zhang, Renormalization group evolution of the universal theories EFT, JHEP 06 (2016) 122 [arXiv:1512.03056] [INSPIRE].

    ADS  Article  Google Scholar 

  68. C. Zhang, Automating predictions for standard model effective field theory in MadGraph5 aMC@NLO, arXiv:1601.03994 [INSPIRE].

  69. C. Zhang, Single top production at next-to-leading order in the standard model effective field theory, Phys. Rev. Lett. 116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].

    ADS  Article  Google Scholar 

  70. F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective lagrangians after matching, Eur. Phys. J. C 76 (2016) 244 [arXiv:1602.00126] [INSPIRE].

    ADS  Article  Google Scholar 

  71. R. Grober, M. Muhlleitner and M. Spira, Signs of composite Higgs pair production at next-to-leading order, JHEP 06 (2016) 080 [arXiv:1602.05851] [INSPIRE].

    ADS  Article  Google Scholar 

  72. B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, arXiv:1604.01019 [INSPIRE].

  73. S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy-light matching in the universal one-loop effective action, arXiv:1604.02445 [INSPIRE].

  74. S. Sapeta, WZ and W+jets production at large transverse momenta beyond NLO, arXiv:1305.6531 [INSPIRE].

  75. M. Grazzini, NNLO predictions for the Higgs boson signal in the HW Wlνlν and HZZ →4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    ADS  Article  Google Scholar 

  76. W.A. Bardeen and V. Visnjic, Quarks and leptons as composite Goldstone fermions, Nucl. Phys. B 194 (1982) 422 [INSPIRE].

    ADS  Article  Google Scholar 

  77. D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    ADS  Article  Google Scholar 

  78. C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP 02 (2014) 101 [arXiv:1308.6323] [INSPIRE].

    ADS  Article  Google Scholar 

  79. A. Azatov, R. Contino, C. Machado and F. Riva, Helicity selection rules and non-interference for BSM amplitudes, arXiv:1607.05236 [INSPIRE].

  80. A. Belyaev, A.C.A. Oliveira, R. Rosenfeld and M.C. Thomas, Multi Higgs and vector boson production beyond the standard model, JHEP 05 (2013) 005 [arXiv:1212.3860] [INSPIRE].

    ADS  Article  Google Scholar 

  81. R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, Strong Higgs interactions at a linear collider, JHEP 02 (2014) 006 [arXiv:1309.7038] [INSPIRE].

    ADS  Article  Google Scholar 

  82. J. Elias-Miro, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett. B 747 (2015) 272 [arXiv:1412.7151] [INSPIRE].

    ADS  Article  Google Scholar 

  83. C. Cheung and C.-H. Shen, Nonrenormalization theorems without supersymmetry, Phys. Rev. Lett. 115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].

    ADS  Article  Google Scholar 

  84. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  85. J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].

    ADS  Article  Google Scholar 

  86. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    ADS  Article  Google Scholar 

  87. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  88. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    ADS  Article  Google Scholar 

  89. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    ADS  Article  Google Scholar 

  90. R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without supersymmetry in the standard model effective field theory, Phys. Lett. B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  91. B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, arXiv:1507.07240 [INSPIRE].

  92. L. Lehman and A. Martin, Low-derivative operators of the standard model effective field theory via Hilbert series methods, JHEP 02 (2016) 081 [arXiv:1510.00372] [INSPIRE].

    ADS  Article  Google Scholar 

  93. B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: Higher dimension operators in the SM EFT, arXiv:1512.03433 [INSPIRE].

  94. I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP 04 (2010) 126 [arXiv:0907.5413] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  95. J. de Blas, J.M. Lizana and M. Pérez-Victoria, Combining searches of Z and W bosons, JHEP 01 (2013) 166 [arXiv:1211.2229] [INSPIRE].

    ADS  Article  Google Scholar 

  96. D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy vector triplets: bridging theory and data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  97. LHC Higgs Cross Section Working Group 2, Higgs basis: proposal for an EFT basis choice for LHC HXSWG, LHCHXSWG-INT-2015-001 (2015).

  98. M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, Pseudo-observables in Higgs decays, Eur. Phys. J. C 75 (2015) 128 [arXiv:1412.6038] [INSPIRE].

    ADS  Article  Google Scholar 

  99. A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].

    ADS  Article  Google Scholar 

  100. A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    ADS  Article  Google Scholar 

  101. A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett. 116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].

    ADS  Article  Google Scholar 

  102. A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, arXiv:1604.03105 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Riva.

Additional information

ArXiv ePrint: 1604.06444

On leave of absence from: Università di Roma La Sapienza and INFN, Roma, Italy. (Roberto Contino)

On leave of absence from: ICREA, E-08010 Barcelona, Spain. (Christophe Grojean)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Contino, R., Falkowski, A., Goertz, F. et al. On the validity of the effective field theory approach to SM precision tests. J. High Energ. Phys. 2016, 144 (2016). https://doi.org/10.1007/JHEP07(2016)144

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2016)144

Keywords

  • Beyond Standard Model
  • Effective field theories
  • Technicolor and Composite Models