W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.
B 268 (1986) 621 [INSPIRE].
ADS
Article
Google Scholar
K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev.
D 48 (1993) 2182 [INSPIRE].
ADS
Google Scholar
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model lagrangian, JHEP
10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
ADS
Article
MATH
Google Scholar
M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev.
D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4 pis in strongly coupled supersymmetry, Phys. Lett.
B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP
06 (2007) 045 [hep-ph/0703164] [INSPIRE].
A. Pomarol, Higgs physics, talk given at 2014 European School of High-Energy Physics (ESHEP 2014), June 18-July 1, Garderen, The Netherlands (2014), arXiv:1412.4410 [INSPIRE].
G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys.
913 (2016) 1 [arXiv:1506.01961].
Article
MATH
Google Scholar
C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys.
B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].
M.B. Einhorn and J. Wudka, The bases of effective field theories, Nucl. Phys.
B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Berthier and M. Trott, Towards consistent electroweak precision data constraints in the SMEFT, JHEP
05 (2015) 024 [arXiv:1502.02570] [INSPIRE].
ADS
Article
Google Scholar
L. Berthier and M. Trott, Consistent constraints on the standard model effective field theory, JHEP
02 (2016) 069 [arXiv:1508.05060] [INSPIRE].
ADS
Article
Google Scholar
A. Greljo, G. Isidori, J.M. Lindert and D. Marzocca, Pseudo-observables in electroweak Higgs production, Eur. Phys. J.
C 76 (2016) 158 [arXiv:1512.06135] [INSPIRE].
ADS
Article
Google Scholar
J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron tt asymmetry at LHC, JHEP
05 (2011) 034 [arXiv:1103.2765] [INSPIRE].
ADS
Article
Google Scholar
A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev.
D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].
ADS
Google Scholar
C. Englert and M. Spannowsky, Effective theories and measurements at colliders, Phys. Lett.
B 740 (2015) 8 [arXiv:1408.5147] [INSPIRE].
ADS
Article
Google Scholar
A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev.
D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
ADS
Google Scholar
A. David and G. Passarino, Through precision straits to next standard model heights, Rev. Phys.
1 (2016) 13 [arXiv:1510.00414] [INSPIRE].
Article
Google Scholar
F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev.
D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].
ADS
Google Scholar
F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP
09 (2010) 033 [arXiv:1005.3998] [INSPIRE].
Article
MATH
Google Scholar
G. Passarino, NLO inspired effective lagrangians for Higgs physics, Nucl. Phys.
B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE].
ADS
Article
MATH
Google Scholar
M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs effective theory: extended Higgs sectors, JHEP
10 (2015) 036 [arXiv:1502.07352] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. de Blas, M. Chala, M. Pérez-Victoria and J. Santiago, Observable effects of general new scalar particles, JHEP
04 (2015) 078 [arXiv:1412.8480] [INSPIRE].
Article
Google Scholar
C.-W. Chiang and R. Huo, Standard model effective field theory: integrating out a generic scalar, JHEP
09 (2015) 152 [arXiv:1505.06334] [INSPIRE].
ADS
Article
Google Scholar
R. Huo, Standard model effective field theory: integrating out vector-like fermions, JHEP
09 (2015) 037 [arXiv:1506.00840] [INSPIRE].
Article
Google Scholar
R. Huo, Effective field theory of integrating out sfermions in the MSSM: complete one-loop analysis, arXiv:1509.05942 [INSPIRE].
J. Brehmer, A. Freitas, D. Lopez-Val and T. Plehn, Pushing Higgs effective theory to its limits, Phys. Rev.
D 93 (2016) 075014 [arXiv:1510.03443] [INSPIRE].
ADS
Google Scholar
J.D. Wells and Z. Zhang, Effective theories of universal theories, JHEP
01 (2016) 123 [arXiv:1510.08462] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Biekötter, J. Brehmer and T. Plehn, Pushing Higgs effective theory over the edge, arXiv:1602.05202 [INSPIRE].
M. Boggia, R. Gomez-Ambrosio and G. Passarino, Low energy behaviour of standard model extensions, JHEP
05 (2016) 162 [arXiv:1603.03660] [INSPIRE].
ADS
Article
Google Scholar
J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].
D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator Dark Matter, JHEP
05 (2015) 009 [arXiv:1502.04701] [INSPIRE].
ADS
Article
Google Scholar
S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge U.K. (2005).
A. Manohar and H. Georgi, Chiral quarks and the nonrelativistic quark model, Nucl. Phys.
B 234 (1984) 189 [INSPIRE].
ADS
Article
Google Scholar
K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys.
B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, arXiv:1603.03064 [INSPIRE].
R. Alonso, E.E. Jenkins and A.V. Manohar, A geometric formulation of Higgs effective field theory: measuring the curvature of scalar field space, Phys. Lett.
B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Degrande et al., Effective field theory: a modern approach to anomalous couplings, Annals Phys.
335 (2013) 21 [arXiv:1205.4231] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys.
B 261 (1985) 379 [INSPIRE].
ADS
Article
Google Scholar
T. Appelquist and M.S. Chanowitz, Unitarity bound on the scale of fermion mass generation, Phys. Rev. Lett.
59 (1987) 2405 [Erratum ibid.
60 (1988) 1589] [INSPIRE].
F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev.
D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].
R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP
05 (2010) 089 [arXiv:1002.1011] [INSPIRE].
ADS
Article
Google Scholar
J.A. Dror, M. Farina, E. Salvioni and J. Serra, Strong tW scattering at the LHC, JHEP
01 (2016) 071 [arXiv:1511.03674] [INSPIRE].
ADS
Article
Google Scholar
O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the standard model effective field theory at NLO in QCD, JHEP
05 (2016) 052 [arXiv:1601.08193] [INSPIRE].
ADS
Article
Google Scholar
O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev.
D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].
ADS
Google Scholar
G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev.
D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].
ADS
Google Scholar
S. Willenbrock and C. Zhang, Effective field theory beyond the standard model, Ann. Rev. Nucl. Part. Sci.
64 (2014) 83 [arXiv:1401.0470] [INSPIRE].
ADS
Article
Google Scholar
B. Henning, X. Lu and H. Murayama, How to use the standard model effective field theory, JHEP
01 (2016) 023 [arXiv:1412.1837] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev.
D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].
ADS
Google Scholar
J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP
05 (2014) 019 [arXiv:1312.2928] [INSPIRE].
ADS
Article
Google Scholar
B. Henning, X. Lu and H. Murayama, What do precision Higgs measurements buy us?, arXiv:1404.1058 [INSPIRE].
R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to
\( h\to b\overline{b} \)
and
\( h\to \tau \overline{\tau} \)
decays in the standard model dimension-6 EFT: four-fermion operators and the large-m
t
limit, JHEP
05 (2016) 080 [arXiv:1512.02508] [INSPIRE].
ADS
Article
Google Scholar
J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev.
D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].
ADS
Google Scholar
D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev.
D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].
ADS
Google Scholar
J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP
11 (2013) 180 [arXiv:1310.1385] [INSPIRE].
ADS
Article
Google Scholar
V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is there room for CP-violation in the top-Higgs sector?, Phys. Rev.
D 94 (2016) 016002 [arXiv:1603.03049] [INSPIRE].
Google Scholar
M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and k-framework, JHEP
07 (2015) 175 [arXiv:1505.03706] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(h → γ γ) case, JHEP
07 (2015) 151 [arXiv:1505.02646] [INSPIRE].
ADS
Article
Google Scholar
C. Hartmann and M. Trott, Higgs decay to two photons at one loop in the standard model effective field theory, Phys. Rev. Lett.
115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].
ADS
Article
Google Scholar
S. Dawson, I.M. Lewis and M. Zeng, Usefulness of effective field theory for boosted Higgs production, Phys. Rev.
D 91 (2015) 074012 [arXiv:1501.04103] [INSPIRE].
ADS
Google Scholar
D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev.
D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].
ADS
Google Scholar
A. Drozd, J. Ellis, J. Quevillon and T. You, Comparing EFT and exact one-loop analyses of non-degenerate stops, JHEP
06 (2015) 028 [arXiv:1504.02409] [INSPIRE].
ADS
Article
Google Scholar
R. Grober, M. Muhlleitner, M. Spira and J. Streicher, NLO QCD corrections to Higgs pair production including dimension-6 operators, JHEP
09 (2015) 092 [arXiv:1504.06577] [INSPIRE].
ADS
Article
Google Scholar
M. Grazzini, A. Ilnicka, M. Spira and M. Wiesemann, BSM effects on the Higgs transverse-momentum spectrum in an EFT approach, PoS (EPS-HEP2015) 144 [arXiv:1511.08059] [INSPIRE].
K. Mimasu, V. Sanz and C. Williams, Higher Order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons, arXiv:1512.02572 [INSPIRE].
A. Drozd, J. Ellis, J. Quevillon and T. You, The universal one-loop effective action, JHEP
03 (2016) 180 [arXiv:1512.03003] [INSPIRE].
ADS
Article
Google Scholar
J.D. Wells and Z. Zhang, Renormalization group evolution of the universal theories EFT, JHEP
06 (2016) 122 [arXiv:1512.03056] [INSPIRE].
ADS
Article
Google Scholar
C. Zhang, Automating predictions for standard model effective field theory in MadGraph5 aMC@NLO, arXiv:1601.03994 [INSPIRE].
C. Zhang, Single top production at next-to-leading order in the standard model effective field theory, Phys. Rev. Lett.
116 (2016) 162002 [arXiv:1601.06163] [INSPIRE].
ADS
Article
Google Scholar
F. del Aguila, Z. Kunszt and J. Santiago, One-loop effective lagrangians after matching, Eur. Phys. J.
C 76 (2016) 244 [arXiv:1602.00126] [INSPIRE].
ADS
Article
Google Scholar
R. Grober, M. Muhlleitner and M. Spira, Signs of composite Higgs pair production at next-to-leading order, JHEP
06 (2016) 080 [arXiv:1602.05851] [INSPIRE].
ADS
Article
Google Scholar
B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, arXiv:1604.01019 [INSPIRE].
S.A.R. Ellis, J. Quevillon, T. You and Z. Zhang, Mixed heavy-light matching in the universal one-loop effective action, arXiv:1604.02445 [INSPIRE].
S. Sapeta, WZ and W+jets production at large transverse momenta beyond NLO, arXiv:1305.6531 [INSPIRE].
M. Grazzini, NNLO predictions for the Higgs boson signal in the H → W W → lνlν and H →ZZ →4l decay channels, JHEP
02 (2008) 043 [arXiv:0801.3232] [INSPIRE].
ADS
Article
Google Scholar
W.A. Bardeen and V. Visnjic, Quarks and leptons as composite Goldstone fermions, Nucl. Phys.
B 194 (1982) 422 [INSPIRE].
ADS
Article
Google Scholar
D.V. Volkov and V.P. Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett.
B 46 (1973) 109 [INSPIRE].
ADS
Article
Google Scholar
C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP
02 (2014) 101 [arXiv:1308.6323] [INSPIRE].
ADS
Article
Google Scholar
A. Azatov, R. Contino, C. Machado and F. Riva, Helicity selection rules and non-interference for BSM amplitudes, arXiv:1607.05236 [INSPIRE].
A. Belyaev, A.C.A. Oliveira, R. Rosenfeld and M.C. Thomas, Multi Higgs and vector boson production beyond the standard model, JHEP
05 (2013) 005 [arXiv:1212.3860] [INSPIRE].
ADS
Article
Google Scholar
R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, Strong Higgs interactions at a linear collider, JHEP
02 (2014) 006 [arXiv:1309.7038] [INSPIRE].
ADS
Article
Google Scholar
J. Elias-Miro, J.R. Espinosa and A. Pomarol, One-loop non-renormalization results in EFTs, Phys. Lett.
B 747 (2015) 272 [arXiv:1412.7151] [INSPIRE].
ADS
Article
Google Scholar
C. Cheung and C.-H. Shen, Nonrenormalization theorems without supersymmetry, Phys. Rev. Lett.
115 (2015) 071601 [arXiv:1505.01844] [INSPIRE].
ADS
Article
Google Scholar
C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(h → γγ), JHEP
04 (2013) 016 [arXiv:1301.2588] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP
08 (2013) 033 [arXiv:1302.5661] [INSPIRE].
ADS
Article
Google Scholar
J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP
11 (2013) 066 [arXiv:1308.1879] [INSPIRE].
ADS
Article
Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP
10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP
01 (2014) 035 [arXiv:1310.4838] [INSPIRE].
ADS
Article
Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP
04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
ADS
Article
Google Scholar
R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without supersymmetry in the standard model effective field theory, Phys. Lett.
B 739 (2014) 95 [arXiv:1409.0868] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Henning, X. Lu, T. Melia and H. Murayama, Hilbert series and operator bases with derivatives in effective field theories, arXiv:1507.07240 [INSPIRE].
L. Lehman and A. Martin, Low-derivative operators of the standard model effective field theory via Hilbert series methods, JHEP
02 (2016) 081 [arXiv:1510.00372] [INSPIRE].
ADS
Article
Google Scholar
B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, . . .: Higher dimension operators in the SM EFT, arXiv:1512.03433 [INSPIRE].
I. Low, R. Rattazzi and A. Vichi, Theoretical constraints on the Higgs effective couplings, JHEP
04 (2010) 126 [arXiv:0907.5413] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. de Blas, J.M. Lizana and M. Pérez-Victoria, Combining searches of Z
′
and W
′
bosons, JHEP
01 (2013) 166 [arXiv:1211.2229] [INSPIRE].
ADS
Article
Google Scholar
D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy vector triplets: bridging theory and data, JHEP
09 (2014) 060 [arXiv:1402.4431] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
LHC Higgs Cross Section Working Group 2, Higgs basis: proposal for an EFT basis choice for LHC HXSWG, LHCHXSWG-INT-2015-001 (2015).
M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, Pseudo-observables in Higgs decays, Eur. Phys. J.
C 75 (2015) 128 [arXiv:1412.6038] [INSPIRE].
ADS
Article
Google Scholar
A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP
01 (2014) 151 [arXiv:1308.2803] [INSPIRE].
ADS
Article
Google Scholar
A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP
02 (2015) 039 [arXiv:1411.0669] [INSPIRE].
ADS
Article
Google Scholar
A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett.
116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].
ADS
Article
Google Scholar
A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, arXiv:1604.03105 [INSPIRE].