Skip to main content
Log in

Constraints on CP-violating Higgs couplings to the third generation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Discovering CP-violating effects in the Higgs sector would constitute an indisputable sign of physics beyond the Standard Model. We derive constraints on the CP-violating Higgs-boson couplings to top and bottom quarks as well as to tau leptons from low-energy bounds on electric dipole moments, resumming large logarithms when necessary. The present and future projections of the sensitivities and comparisons with the LHC constraints are provided. Non-trivial constraints are possible in the future, even if the Higgs boson only couples to the third-generation fermions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.

  2. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  3. ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [arXiv:1307.1427] [INSPIRE].

    ADS  Google Scholar 

  4. J. Olsen, CMS Future, talk at Snowmass Energy Frontier Workshop, 1 July 2013, Seattle U.S.A.

  5. S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their tau decay channels, Phys. Rev. Lett. 100 (2008) 171605 [arXiv:0801.2297] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the tau to 1-prong decay channels, Phys. Lett. B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE].

    Article  ADS  Google Scholar 

  7. S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its tau decays at the LHC, Phys. Rev. D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE].

    ADS  Google Scholar 

  8. R. Harnik, A. Martin, T. Okui, R. Primulando and F. Yu, Measuring CP-violation in h→τ+τ at Colliders,Phys. Rev. D 88 (2013) 076009[arXiv:1308.1094] [INSPIRE].

    ADS  Google Scholar 

  9. K. Nishiwaki, S. Niyogi and A. Shivaji, ttH Anomalous Coupling in Double Higgs Production, arXiv:1309.6907 [INSPIRE].

  10. D. Stolarski, R. Primulando and J. Zupan, in preparation.

  11. R.M. Godbole, D. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].

    Article  ADS  Google Scholar 

  12. B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].

    ADS  Google Scholar 

  13. D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].

    ADS  Google Scholar 

  14. S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].

    ADS  Google Scholar 

  15. R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].

  16. CMS collaboration, Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].

    Article  ADS  Google Scholar 

  17. ATLAS collaboration, Study of the spin of the new boson with up to 25 fb −1 of ATLAS data, ATLAS-CONF-2013-040 (2013).

  18. A. Freitas and P. Schwaller, Higgs CP Properties From Early LHC Data, Phys. Rev. D 87 (2013) 055014 [arXiv:1211.1980] [INSPIRE].

    ADS  Google Scholar 

  19. D. McKeen, M. Pospelov and A. Ritz, Modified Higgs branching ratios versus CP and lepton flavor violation, Phys. Rev. D 86 (2012) 113004 [arXiv:1208.4597] [INSPIRE].

    ADS  Google Scholar 

  20. G.F. Giudice and O. Lebedev, Higgs-dependent Yukawa couplings, Phys. Lett. B 665 (2008) 79 [arXiv:0804.1753] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Goudelis, O. Lebedev and J.-h. Park, Higgs-induced lepton flavor violation, Phys. Lett. B 707 (2012) 369 [arXiv:1111.1715] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Cirigliano and M.J. Ramsey-Musolf, Low Energy Probes of Physics Beyond the Standard Model, Prog. Part. Nucl. Phys. 71 (2013) 2 [arXiv:1304.0017] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric Dipole Moments of Nucleons, Nuclei and Atoms: The Standard Model and Beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Stöckinger, The Muon Magnetic Moment and Supersymmetry, J. Phys. G 34 (2007) R45 [hep-ph/0609168] [INSPIRE].

    ADS  Google Scholar 

  29. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    Article  ADS  Google Scholar 

  30. ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, arXiv:1310.7534 [INSPIRE].

  31. S. Weinberg, Larger Higgs Exchange Terms in the Neutron Electric Dipole Moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].

    Article  ADS  Google Scholar 

  32. D.A. Dicus, Neutron Electric Dipole Moment From Charged Higgs Exchange, Phys. Rev. D 41 (1990) 999 [INSPIRE].

    ADS  Google Scholar 

  33. W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys. 63 (1991) 313 [Erratum ibid. 64 (1992) 633] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev. D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE].

    ADS  Google Scholar 

  35. J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].

    ADS  Google Scholar 

  36. C. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Jung and A. Pich, Electric Dipole Moments in Two-Higgs-Doublet Models, arXiv:1308.6283 [INSPIRE].

  38. W. Griffith et al., Improved Limit on the Permanent Electric Dipole Moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [INSPIRE].

  40. E. Braaten, C.-S. Li and T.-C. Yuan, The Evolution of Weinbergs Gluonic CP Violation Operator, Phys. Rev. Lett. 64 (1990) 1709 [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE].

    Article  ADS  Google Scholar 

  42. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE], and 2013 partial update for the 2014 edition available at http://pdg.lbl.gov/.

  43. J. Laiho, Light quark physics from lattice QCD, arXiv:1106.0457 [INSPIRE].

  44. F. Borzumati, C. Greub, T. Hurth and D. Wyler, Gluino contribution to radiative B decays: Organization of QCD corrections and leading order results, Phys. Rev. D 62 (2000) 075005 [hep-ph/9911245] [INSPIRE].

    ADS  Google Scholar 

  45. A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397 [hep-ph/0005183] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Hisano, K. Tsumura and M.J. Yang, QCD Corrections to Neutron Electric Dipole Moment from Dimension-six Four-Quark Operators, Phys. Lett. B 713 (2012) 473 [arXiv:1205.2212] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Chang, W.-Y. Keung, C. Li and T. Yuan, QCD Corrections to CP Violation From Color Electric Dipole Moment of b Quark, Phys. Lett. B 241 (1990) 589 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Brod.

Additional information

ArXiv ePrint: 1310.1385

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brod, J., Haisch, U. & Zupan, J. Constraints on CP-violating Higgs couplings to the third generation. J. High Energ. Phys. 2013, 180 (2013). https://doi.org/10.1007/JHEP11(2013)180

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)180

Keywords

Navigation