Skip to main content

Einstein gravity, massive gravity, multi-gravity and nonlinear realizations

A preprint version of the article is available at arXiv.

Abstract

The existence of a ghost free theory of massive gravity begs for an interpre-tation as a Higgs phase of General Relativity. We revisit the study of massive gravity as a Higgs phase. Absent a compelling microphysical model of spontaneous symmetry breaking in gravity, we approach this problem from the viewpoint of nonlinear realizations. We employ the coset construction to search for the most restrictive symmetry breaking pattern whose low energy theory will both admit the de Rham-Gabadadze-Tolley (dRGT) potentials and nonlinearly realize every symmetry of General Relativity, thereby providing a new perspective from which to build theories of massive gravity. In addition to the known ghost-free terms, we find a novel parity violating interaction which preserves the constraint structure of the theory, but which vanishes on the normal branch of the theory. Finally, the procedure is extended to the cases of bi-gravity and multi-vielbein theories. Analogous parity violating interactions exist here, too, and may be non-trivial for certain classes of multi-metric theories.

References

  1. C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli Action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  2. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of Massive Gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  3. N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. D. Blas and S. Sibiryakov, Completing Lorentz violating massive gravity at high energies, JETP 120 (2015) 509 [Zh. Eksp. Teor. Fiz. 147 (2015) 578] [arXiv:1410.2408] [INSPIRE].

  5. M. Porrati, Higgs phenomenon for 4 − D gravity in anti-de Sitter space, JHEP 04 (2002) 058 [hep-th/0112166] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. M. Porrati, Higgs phenomenon for the graviton in AdS space, Mod. Phys. Lett. A 18 (2003) 1793 [hep-th/0306253] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. V.I. Ogievetsky, Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups, Lett. Nuovo Cim. 8 (1973) 988 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  8. A.B. Borisov and V.I. Ogievetsky, Theory of Dynamical Affine and Conformal Symmetries as Gravity Theory, Theor. Math. Phys. 21 (1975) 1179 [INSPIRE].

    Article  Google Scholar 

  9. E.A. Ivanov and J. Niederle, Gauge Formulation of Gravitation Theories. 1. The Poincaré, de Sitter and Conformal Cases, Phys. Rev. D 25 (1982) 976 [INSPIRE].

    ADS  MATH  Google Scholar 

  10. A. Pashnev, Nonlinear realizations of the (super)diffeomorphism groups, geometrical objects and integral invariants in the superspace, hep-th/9704203 [INSPIRE].

  11. F. Riccioni and P. West, Local E11, JHEP 04 (2009) 051 [arXiv:0902.4678] [INSPIRE].

    ADS  Article  Google Scholar 

  12. L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the relativisticwheel: gravity, cosets and spinning objects, JHEP 11 (2014) 008 [arXiv:1405.7384] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  13. E.A. Ivanov and V.I. Ogievetsky, Gauge theories as theories of spontaneous breakdown, JETP Lett. 23 (1976) 606 [INSPIRE].

    ADS  Google Scholar 

  14. G. Goon, A. Joyce and M. Trodden, Spontaneously broken gauge theories and the coset construction, Phys. Rev. D 90 (2014) 025022 [arXiv:1405.5532] [INSPIRE].

    ADS  Google Scholar 

  15. D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].

    ADS  Google Scholar 

  16. C. de Rham, L. Heisenberg and R.H. Ribeiro, Quantum Corrections in Massive Gravity, Phys. Rev. D 88 (2013) 084058 [arXiv:1307.7169] [INSPIRE].

    ADS  Google Scholar 

  17. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].

    ADS  Article  Google Scholar 

  18. K. Hinterbichler and R.A. Rosen, Interacting Spin-2 Fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Problems of massive gravities, Mod. Phys. Lett. A 30 (2015) 1540006 [arXiv:1410.2289] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Article  MATH  Google Scholar 

  21. K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].

    ADS  Article  Google Scholar 

  22. M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. P. Creminelli, A. Nicolis, M. Papucci and E. Trincherini, Ghosts in massive gravity, JHEP 09 (2005) 003 [hep-th/0505147] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. S.F. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

    ADS  Article  Google Scholar 

  26. S.F. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. B. Zumino, Effective Lagrangians and broken symmetries, Brandeis University Lectures on Elementary Particles and Quantum Field Theory 2 (1970) 437.

  28. S. Groot Nibbelink, M. Peloso and M. Sexton, Nonlinear Properties of Vielbein Massive Gravity, Eur. Phys. J. C 51 (2007) 741 [hep-th/0610169] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. D. Ivanenko and G. Sardanashvily, The gauge treatment of gravity, Phys. Rept. 94 (1983) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. I. Kirsch, A Higgs mechanism for gravity, Phys. Rev. D 72 (2005) 024001 [hep-th/0503024] [INSPIRE].

    ADS  Google Scholar 

  31. N. Boulanger and I. Kirsch, A Higgs mechanism for gravity. Part II. Higher spin connections, Phys. Rev. D 73 (2006) 124023 [hep-th/0602225] [INSPIRE].

    ADS  Google Scholar 

  32. G. ’t Hooft, Unitarity in the Brout-Englert-Higgs Mechanism for Gravity, arXiv:0708.3184 [INSPIRE].

  33. A.H. Chamseddine and V. Mukhanov, Higgs for Graviton: Simple and Elegant Solution, JHEP 08 (2010) 011 [arXiv:1002.3877] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  34. V.A. Kostelecky and S. Samuel, Gravitational Phenomenology in Higher Dimensional Theories and Strings, Phys. Rev. D 40 (1989) 1886 [INSPIRE].

    ADS  Google Scholar 

  35. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

    ADS  Article  Google Scholar 

  37. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].

    ADS  Article  Google Scholar 

  38. D.V. Volkov, Phenomenological Lagrangians, Sov. J. Part. Nucl. 4 (1973) 3.

    MathSciNet  Google Scholar 

  39. S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568 [INSPIRE].

    ADS  Article  Google Scholar 

  40. D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3 [INSPIRE].

    MathSciNet  Google Scholar 

  41. V. Ogievetsky, Nonlinear Realizations of Internal and Space-time Symmetries, in proceedings of the X-th Winter School of Theoretical Physics in Karpacz 1 (1974).

  42. E. Ivanov and V. Ogievetsky, The inverse Higgs phenomenon in nonlinear realizations, Teor. Mat. Fiz. 25 (1975) 164 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  43. I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstones theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].

    ADS  Article  Google Scholar 

  44. I.N. McArthur, Nonlinear realizations of symmetries and unphysical Goldstone bosons, JHEP 11 (2010) 140 [arXiv:1009.3696] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  45. A. Nicolis, R. Penco, F. Piazza and R.A. Rosen, More on gapped Goldstones at finite density: more gapped Goldstones, JHEP 11 (2013) 055 [arXiv:1306.1240] [INSPIRE].

    ADS  Article  Google Scholar 

  46. T. Brauner and H. Watanabe, Spontaneous breaking of spacetime symmetries and the inverse Higgs effect, Phys. Rev. D 89 (2014) 085004 [arXiv:1401.5596] [INSPIRE].

    ADS  Google Scholar 

  47. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. A. Mardones and J. Zanelli, Lovelock-Cartan theory of gravity, Class. Quant. Grav. 8 (1991) 1545 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. J. Zanelli, Chern-Simons Forms in Gravitation Theories, Class. Quant. Grav. 29 (2012) 133001 [arXiv:1208.3353] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. G. Gabadadze, K. Hinterbichler, D. Pirtskhalava and Y. Shang, Potential for general relativity and its geometry, Phys. Rev. D 88 (2013) 084003 [arXiv:1307.2245] [INSPIRE].

    ADS  Google Scholar 

  51. N.A. Ondo and A.J. Tolley, Complete Decoupling Limit of Ghost-free Massive Gravity, JHEP 11 (2013) 059 [arXiv:1307.4769] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. M. Andrews, G. Goon, K. Hinterbichler, J. Stokes and M. Trodden, Massive Gravity Coupled to Galileons is Ghost-Free, Phys. Rev. Lett. 111 (2013) 061107 [arXiv:1303.1177] [INSPIRE].

    ADS  Article  Google Scholar 

  53. C. Deffayet, J. Mourad and G. Zahariade, A note onsymmetricvielbeins in bimetric, massive, perturbative and non perturbative gravities, JHEP 03 (2013) 086 [arXiv:1208.4493] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. S.F. Hassan, A. Schmidt-May and M. von Strauss, Metric Formulation of Ghost-Free Multivielbein Theory, arXiv:1204.5202 [INSPIRE].

  55. J. Noller, J.H.C. Scargill and P.G. Ferreira, Interacting spin-2 fields in the Stückelberg picture, JCAP 02 (2014) 007 [arXiv:1311.7009] [INSPIRE].

    ADS  Article  Google Scholar 

  56. H.R. Afshar, E.A. Bergshoeff and W. Merbis, Interacting spin-2 fields in three dimensions, JHEP 01 (2015) 040 [arXiv:1410.6164] [INSPIRE].

    ADS  Article  Google Scholar 

  57. J.H.C. Scargill, J. Noller and P.G. Ferreira, Cycles of interactions in multi-gravity theories, JHEP 12 (2014) 160 [arXiv:1410.7774] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. C.J. Isham, A. Salam and J.A. Strathdee, Nonlinear realizations of space-time symmetries. Scalar and tensor gravity, Annals Phys. 62 (1971) 98 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. J.A. de Azcarraga, J.M. Izquierdo and J.C. Perez Bueno, An Introduction to some novel applications of Lie algebra cohomology in mathematics and physics, Rev. R. Acad. Cien. Exactas Fis. Nat. Ser. A Mat. 95 (2001) 225 [physics/9803046] [INSPIRE].

  60. E. D’Hoker and S. Weinberg, General effective actions, Phys. Rev. D 50 (1994) 6050 [hep-ph/9409402] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. S. Folkerts, A. Pritzel and N. Wintergerst, On ghosts in theories of self-interacting massive spin-2 particles, arXiv:1107.3157 [INSPIRE].

  62. K. Hinterbichler, Ghost-free derivative interactions for a massive graviton, JHEP 10 (2013) 102 [arXiv:1305.7227] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  63. C. de Rham, A. Matas and A.J. Tolley, New Kinetic Interactions for Massive Gravity?, Class. Quant. Grav. 31 (2014) 165004 [arXiv:1311.6485] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. R. Kimura and D. Yamauchi, Derivative interactions in de Rham-Gabadadze-Tolley massive gravity, Phys. Rev. D 88 (2013) 084025 [arXiv:1308.0523] [INSPIRE].

    ADS  Google Scholar 

  65. C. de Rham, A. Matas, and A.J. Tolley, New kinetic terms for massive gravity and multi-gravity: a no-go in Vielbein form, arXiv:1505.00831 [INSPIRE].

  66. J. Noller, On consistent kinetic and derivative interactions for gravitons, JCAP 04 (2015) 025 [arXiv:1409.7692] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett Goon.

Additional information

ArXiv ePrint: 1412.6098

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goon, G., Hinterbichler, K., Joyce, A. et al. Einstein gravity, massive gravity, multi-gravity and nonlinear realizations. J. High Energ. Phys. 2015, 101 (2015). https://doi.org/10.1007/JHEP07(2015)101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2015)101

Keywords

  • Spontaneous Symmetry Breaking
  • Classical Theories of Gravity
  • Space-Time Symmetries
  • Effective field theories