Skip to main content
Log in

Nonlinear realizations of symmetries and unphysical Goldstone bosons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The embedding of a p-brane into higher dimensional spacetime breaks not only translational symmetries transverse to the worldvolume, but also Lorentz symmetries. There exist formulations for p-brane actions which associate Goldstone bosons with the generators of the broken Lorentz symmetries. These Goldstone bosons are unphysical, in that they can be eliminated in favour of other Goldstone bosons either via their equations of motion or via the imposition of an inverse Higgs constraint. In this paper, we examine the inter-relationship between the coset parameterization necessary to implement the inverse Higgs constraint, the equivalence of the inverse Higgs constraint to equations of motion, and the ability to find versions of the action with no explicit dependence on the unphysical Goldstone bosons. This is evidence that the unphysical Goldstone bosons are gauge degrees of freedom associated with an enlarged isotropy group. In addition to p-brane actions, a number of other cases, including conformally invariant dilaton actions, are shown to exhibit the same structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Ivanov and V.I. Ogievetsky, The inverse Higgs phenomenon in nonlinear realizations, Teor. Mat. Fiz. 25 (1975) 164.

    Google Scholar 

  2. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239 [SPIRES].

    Article  ADS  Google Scholar 

  3. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [SPIRES].

    Article  ADS  Google Scholar 

  4. C.J. Isham, A group-theoretic approach to chiral transformations, Nuovo Cim. A 59 (1969) 356 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. D.V. Volkov, Phenomenological lagrangians, Sov. J. Nucl. Phys. 4 (1973) 1.

    Google Scholar 

  6. V.I. Ogievetsky, Nonlinear realizations of internal and space-time symmetries in the proceedings of the 10th Karpacz winter school of theoretical physics, February 19–March 4, Karpacz, Poland (1973).

  7. J. Hughes and J. Polchinski, Partially broken global supersymmetry and the superstring, Nucl. Phys. B 278 (1986) 147 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Hughes, J. Liu and J. Polchinski, Supermembranes, Phys. Lett. B 180 (1986) 370 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. P.K. Townsend, Supersymmetric extended solitons, Phys. Lett. B 202 (1988) 53 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. J.P. Gauntlett, K. Itoh and P.K. Townsend, Superparticle with extrinsic curvature, Phys. Lett. B 238 (1990) 65 [SPIRES].

    ADS  Google Scholar 

  11. P.C. West, Automorphisms, non-linear realizations and branes, JHEP 02 (2000) 024 [hep-th/0001216] [SPIRES].

    Article  ADS  Google Scholar 

  12. E. Ivanov, Diverse PBGS patterns and superbranes, hep-th/0002204 [SPIRES].

  13. I. Low and A.V. Manohar, Spontaneously broken spacetime symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [SPIRES].

    Article  ADS  Google Scholar 

  14. J. Gomis, K. Kamimura and P.C. West, The construction of brane and superbrane actions using non-linear realisations, Class. Quant. Grav. 23 (2006) 7369 [hep-th/0607057] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. A. Salam and J.A. Strathdee, Nonlinear realizations. 2. Conformal symmetry, Phys. Rev. 184 (1969) 1760 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. C.J. Isham, A. Salam and J.A. Strathdee, Spontaneous breakdown of conformal symmetry, Phys. Lett. B 31 (1970) 300 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. C.J. Isham, A. Salam and J.A. Strathdee, Nonlinear realizations of space-time symmetries. Scalar and tensor gravity, Annals Phys. 62 (1971) 98 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. A.B. Borisov and V.I. Ogievetsky, Theory of dynamical affine and conformal symmetries as gravity theory of the gravitational field, Theor. Math. Phys. 21 (1975) 1179 [Teor. Mat. Fiz. 21 (1974) 329] [SPIRES].

    Article  Google Scholar 

  19. E.A. Ivanov, S.O. Krivonos and V.M. Leviant, Geometry of conformal mechanics, J. Phys. A 22 (1989) 345 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. S.M. Kuzenko and I.N. McArthur, Goldstone multiplet for partially broken superconformal symmetry, Phys. Lett. B 522 (2001) 320 [hep-th/0109183] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  21. F. Delduc, E. Ivanov and S. Krivonos, Partial supersymmetry breaking and AdS 4 supermembrane, Phys. Lett. B 529 (2002) 233 [hep-th/0111106] [SPIRES].

    ADS  Google Scholar 

  22. S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev. D 66 (2002) 086001 [Erratum ibid. D 67 (2003) 049901] [hep-th/0206126] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. E. Ivanov, S. Krivonos and J. Niederle, Conformal and superconformal mechanics revisited, Nucl. Phys. B 677 (2004) 485 [hep-th/0210196] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. E. Ivanov, ’Conformal theories — AdS branes’ transform, or one more face of AdS/CFT, Theor. Math. Phys. 139 (2004) 513 [Teor. Mat. Fiz. 139 (2004) 77] [hep-th/0305255] [SPIRES].

    Article  MATH  Google Scholar 

  25. T.E. Clark, S.T. Love, M. Nitta and T. ter Veldhuis, AdS(d + 1) → AdS(d), J. Math. Phys. 46 (2005) 102304 [hep-th/0501241] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Bagger and A. Galperin, Matter couplings in partially broken extended supersymmetry, Phys. Lett. B 336 (1994) 25 [hep-th/9406217] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. J. Bagger and A. Galperin, A new Goldstone multiplet for partially broken supersymmetry, Phys. Rev. D 55 (1997) 1091 [hep-th/9608177] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. E. Ivanov and S. Krivonos, N = 1 D = 4 supermembrane in the coset approach, Phys. Lett. B 453 (1999) 237 [Erratum ibid. B 657 (2007) 269] [hep-th/9901003] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. S. Bellucci, E. Ivanov and S. Krivonos, Superworldvolume dynamics of superbranes from nonlinear realizations, Phys. Lett. B 482 (2000) 233 [hep-th/0003273] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. S. Bellucci, E. Ivanov and S. Krivonos, Superbranes and super Born-Infeld theories from nonlinear realizations, Nucl. Phys. Proc. Suppl. 102 (2001) 26 [hep-th/0103136] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Bellucci and S. Krivonos, Supersymmetric mechanics in superspace, Lect. Notes Phys. 698 (2006) 49 [hep-th/0602199] [SPIRES].

    Article  MathSciNet  Google Scholar 

  32. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. McArthur.

Additional information

ArXiv ePrint: 1009.3696

Rights and permissions

Reprints and permissions

About this article

Cite this article

McArthur, I.N. Nonlinear realizations of symmetries and unphysical Goldstone bosons. J. High Energ. Phys. 2010, 140 (2010). https://doi.org/10.1007/JHEP11(2010)140

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)140

Keywords

Navigation