Skip to main content

Advertisement

SpringerLink
\( \mathcal{N}=2 \) supersymmetric gauge theories on S2 × S2 and Liouville Gravity
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 13 July 2015

\( \mathcal{N}=2 \) supersymmetric gauge theories on S2 × S2 and Liouville Gravity

  • Aditya Bawane1,2,
  • Giulio Bonelli1,2,
  • Massimiliano Ronzani1,2 &
  • …
  • Alessandro Tanzini1,2 

Journal of High Energy Physics volume 2015, Article number: 54 (2015) Cite this article

  • 412 Accesses

  • 26 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We consider \( \mathcal{N}=2 \) supersymmetric gauge theories on four manifolds admitting an isometry. Generalized Killing spinor equations are derived from the consistency of supersymmetry algebrae and solved in the case of four manifolds admitting a U(1) isometry. This is used to explicitly compute the supersymmetric path integral on S2 × S2 via equivariant localization. The building blocks of the resulting partition function are shown to contain the three point functions and the conformal blocks of Liouville Gravity.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. T.T. Dumitrescu and G. Festuccia, Exploring curved superspace (II), JHEP 01 (2013) 072 [arXiv:1209.5408] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. N. Hama and K. Hosomichi, Seiberg-Witten theories on ellipsoids, JHEP 09 (2012) 033 [Addendum ibid. 10 (2012) 051] [arXiv:1206.6359] [INSPIRE].

  4. C. Klare and A. Zaffaroni, Extended supersymmetry on curved spaces, JHEP 10 (2013) 218 [arXiv:1308.1102] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. R.K. Gupta and S. Murthy, All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP 02 (2013) 141 [arXiv:1208.6221] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. E. Witten, Mirror manifolds and topological field theory, hep-th/9112056 [INSPIRE].

  8. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  9. U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multiinstanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [INSPIRE].

    Article  ADS  Google Scholar 

  10. N. Nekrasov, Localizing gauge theories, in XIVth international congress on mathematical physics, Lisbon Portugal July 28 – August 2 2003.

  11. G. Bonelli, K. Maruyoshi, A. Tanzini and F. Yagi, N = 2 gauge theories on toric singularities, blow-up formulae and W-algebrae, JHEP 01 (2013) 014 [arXiv:1208.0790] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. U. Bruzzo, M. Pedrini, F. Sala and R.J. Szabo, Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces, arXiv:1312.5554 [INSPIRE].

  14. U. Bruzzo, F. Sala and R.J. Szabo, N = 2 quiver gauge theories on A-type ALE spaces, Lett. Math. Phys. 105 (2015) 401 [arXiv:1410.2742] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4d Riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S.S. Razamat and M. Yamazaki, S-duality and the N = 2 lens space index, JHEP 10 (2013) 048 [arXiv:1306.1543] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. N. Bobev, H. Elvang, D.Z. Freedman and S.S. Pufu, Holography for N = 2* on S4, JHEP 07 (2014) 001 [arXiv:1311.1508] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Closset and I. Shamir, The N = 1 chiral multiplet on T2 × S2 and supersymmetric localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].

    Article  ADS  Google Scholar 

  19. B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123 [arXiv:1405.5144] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J. Gomis and N. Ishtiaque, Kähler potential and ambiguities in 4d N = 2 SCFTs, JHEP 04 (2015) 169 [arXiv:1409.5325] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Marmiroli, Phase structure of N = 2* SYM on ellipsoids, arXiv:1410.4715 [INSPIRE].

  22. J. Gomis and C. Musema, Partition function of N = 2 gauge theories on S2 × S2, in preparation.

  23. G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. C. Closset and S. Cremonesi, Comments on N = (2, 2) supersymmetry on two-manifolds, JHEP 07 (2014) 075 [arXiv:1404.2636] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. L. Baulieu, G. Bossard and A. Tanzini, Topological vector symmetry of BRSTQFT and construction of maximal supersymmetry, JHEP 08 (2005) 037 [hep-th/0504224] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and Nakajima-Yoshioka blow-up equations, arXiv:1310.7281 [INSPIRE].

  29. A.B. Zamolodchikov, On the three-point function in minimal Liouville gravity, hep-th/0505063 [INSPIRE].

  30. A. Belavin and A. Zamolodchikov, Polyakov’s string: twenty five years after. Proceedings, hep-th/0510214 [INSPIRE].

  31. S. Ribault and R. Santachiara, Liouville theory with a central charge less than one, arXiv:1503.02067 [INSPIRE].

  32. G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and super Liouville conformal field theories, JHEP 08 (2011) 056 [arXiv:1106.2505] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge theories on ALE space and super Liouville correlation functions, Lett. Math. Phys. 101 (2012) 103 [arXiv:1107.4609] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A.A. Belavin, M.A. Bershtein, B.L. Feigin, A.V. Litvinov and G.M. Tarnopolsky, Instanton moduli spaces and bases in coset conformal field theory, Commun. Math. Phys. 319 (2013) 269 [arXiv:1111.2803] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. Schomerus and P. Suchanek, Liouville’s imaginary shadow, arXiv:1210.1856 [INSPIRE].

  36. L. Hadasz and Z. Jaskólski, Super-Liouville-double Liouville correspondence, JHEP 05 (2014) 124 [arXiv:1312.4520] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. F. Benini and S. Cremonesi, Partition functions of N = (2, 2) gauge theories on S2 and vortices, Commun. Math. Phys. 334 (2015) 1483 [arXiv:1206.2356] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge theory loop operators and Liouville theory, JHEP 02 (2010) 057 [arXiv:0909.1105] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. H. Awata, H. Fuji, H. Kanno, M. Manabe and Y. Yamada, Localization with a surface operator, irregular conformal blocks and open topological string, Adv. Theor. Math. Phys. 16 (2012) 725 [arXiv:1008.0574] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. International School of Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy

    Aditya Bawane, Giulio Bonelli, Massimiliano Ronzani & Alessandro Tanzini

  2. INFN, Sezione di Trieste, Trieste, Italy

    Aditya Bawane, Giulio Bonelli, Massimiliano Ronzani & Alessandro Tanzini

Authors
  1. Aditya Bawane
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Giulio Bonelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Massimiliano Ronzani
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Alessandro Tanzini
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Massimiliano Ronzani.

Additional information

ArXiv ePrint: 1411.2762

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bawane, A., Bonelli, G., Ronzani, M. et al. \( \mathcal{N}=2 \) supersymmetric gauge theories on S2 × S2 and Liouville Gravity. J. High Energ. Phys. 2015, 54 (2015). https://doi.org/10.1007/JHEP07(2015)054

Download citation

  • Received: 21 January 2015

  • Revised: 15 May 2015

  • Accepted: 15 June 2015

  • Published: 13 July 2015

  • DOI: https://doi.org/10.1007/JHEP07(2015)054

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetric gauge theory
  • Extended Supersymmetry
  • Topological Field Theories
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.