Skip to main content
Log in

All solutions of the localization equations for \( \mathcal{N}=2 \) quantum black hole entropy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We find the most general bosonic solution to the localization equations describing the contributions to the quantum entropy of supersymmetric black holes in four dimensional \( \mathcal{N}=2 \) supergravity coupled to n v vector multiplets. This requires the analysis of the BPS equations of the corresponding off-shell supergravity (including fluctuations of the auxiliary fields) with AdS 2 × S 2 attractor boundary conditions. Our work completes and extends the results of arXiv:1012.0265 that were obtained for the vector multiplet sector, to include the fluctuations of all the fields of the off-shell supergravity. We find that, when the auxiliary SU(2) gauge field strength vanishes, the most general supersymmetric configuration preserving four supercharges is labelled by n v + 1 real parameters corresponding to the excitations of the conformal mode of the graviton and the scalars of the n v vector multiplets. In the general case, the localization manifold is labelled by an additional SU(2) triplet of one-forms and a scalar function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Banerjee, R.K. Gupta and A. Sen, Logarithmic corrections to extremal black hole entropy from quantum entropy function, JHEP 03 (2011) 147 [arXiv:1005.3044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic corrections to N = 4 and N =8 black hole entropy: a one loop test of quantum gravity, JHEP 11(2011) 143 [arXiv:1106.0080] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, arXiv:1108.3842 [INSPIRE].

  4. A. Sen, Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Dabholkar, J. Gomes and S. Murthy, Localization & exact holography, arXiv:1111.1161[INSPIRE].

  7. I. Mandal and A. Sen, Black hole microstate counting and its macroscopic counterpart, Nucl. Phys. Proc. Suppl. 216 (2011) 147 [arXiv:1008.3801] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206-206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity, gr-qc/9502009 [INSPIRE].

  13. A. Sen, Entropy function and AdS 2/CF T 1 Correspondence, JHEP 11 (2008) 075 [arXiv:0805.0095] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Sen, Quantum entropy function from AdS 2/CF T 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].̃

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. E. Witten, Mirror manifolds and topological field theory, hep-th/9112056 [INSPIRE].

  17. E. Witten, The N matrix model and gauged WZW models, Nucl. Phys. B 371 (1992) 191 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A.S. Schwarz and O. Zaboronsky, Supersymmetry and localization, Commun. Math. Phys. 183 (1997) 463 [hep-th/9511112] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. O.V. Zaboronsky, Dimensional reduction in supersymmetric field theories, hep-th/9611157 [INSPIRE].

  20. H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004) 106007 [hep-th/0405146] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal type II string theory, hep-th/9903163 [INSPIRE].

  22. N. Banerjee, D.P. Jatkar and A. Sen, Asymptotic expansion of the N = 4 dyon degeneracy, JHEP 05 (2009) 121 [arXiv:0810.3472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Murthy and B. Pioline, A Farey tale for N = 4 dyons, JHEP 09 (2009) 022 [arXiv:0904.4253] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011 [INSPIRE].

  25. K. Tod, All metrics admitting supercovariantly constant spinors, Phys. Lett. B 121 (1983) 241 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Biran, F. Englert, B. de Wit and H. Nicolai, Gauged N = 8 supergravity and its breaking from spontaneous compactification, Phys. Lett. B 124 (1983) 45 [Erratum ibid. B 128 (1983)461] [INSPIRE].

    Article  ADS  Google Scholar 

  27. B. de Wit and H. Nicolai, The parallelizing S 7 torsion in gauged N = 8 supergravity, Nucl. Phys. B 231 (1984) 506 [INSPIRE].

    Article  ADS  Google Scholar 

  28. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum configurations for superstrings, Nucl. Phys. B 258 (1985) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Tod, More on supercovariantly constant spinors, Class. Quant. Grav. 12 (1995) 1801 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five- dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. P. Meessen and T. Ort´ın, The supersymmetric configurations of N = 2, D = 4 supergravity coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099] [INSPIRE].

    Article  ADS  Google Scholar 

  32. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. B. de Wit, J. van Holten and A. Van Proeyen, Transformation rules of N = 2 supergravity multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].

    Article  ADS  Google Scholar 

  37. B. de Wit, P. Lauwers and A. Van Proeyen, Lagrangians of N = 2 supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  38. B. de Wit, J. van Holten and A. Van Proeyen, Structure of N = 2 supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].

    Article  ADS  Google Scholar 

  39. T. Mohaupt, Black hole entropy, special geometry and strings, Fortsch. Phys. 49 (2001) 3 [hep-th/0007195] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in N =2 supergravity with R 2 interactions, JHEP 12(2000) 019 [hep-th/0009234] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Batrachenko and W. Wen, Generalized holonomy of supergravities with 8 real supercharges, Nucl. Phys. B 690 (2004) 331 [hep-th/0402141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. M.M. Caldarelli and D. Klemm, All supersymmetric solutions of N = 2, D = 4 gauged supergravity, JHEP 09 (2003) 019 [hep-th/0307022] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. J.F. Nieves and P.B. Pal, Generalized Fierz identities, Am. J. Phys. 72 (2004) 1100 [hep-ph/0306087] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. N. Banerjee, S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Supersymmetry, localization and quantum entropy function, JHEP 02 (2010) 091 [arXiv:0905.2686] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. V. Cortes, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of euclidean supersymmetry. 1. Vector multiplets, JHEP 03 (2004) 028 [hep-th/0312001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Gupta.

Additional information

ArXiv ePrint: 1208.6221

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.K., Murthy, S. All solutions of the localization equations for \( \mathcal{N}=2 \) quantum black hole entropy. J. High Energ. Phys. 2013, 141 (2013). https://doi.org/10.1007/JHEP02(2013)141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2013)141

Keywords

Navigation