Skip to main content
Log in

Form factor approach to diagonal finite volume matrix elements in Integrable QFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive an exact formula for finite volume excited state mean values of local operators in 1+1 dimensional Integrable QFT with diagonal scattering. Our result is a non-trivial generalization of the LeClair-Mussardo series, which is a form factor expansion for finite size ground state mean values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].

    Article  ADS  Google Scholar 

  3. L. Lellouch and M. Lüscher, Weak transition matrix elements from finite volume correlation functions, Commun. Math. Phys. 219 (2001) 31 [hep-lat/0003023] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. A. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. T.R. Klassen and E. Melzer, Purely elastic scattering theories and their ultraviolet limits, Nucl. Phys. B 338 (1990) 485 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. C. Destri and H. de Vega, New thermodynamic Bethe ansatz equations without strings, Phys. Rev. Lett. 69 (1992) 2313 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. C. Destri and H. De Vega, Unified approach to thermodynamic Bethe ansatz and finite size corrections for lattice models and field theories, Nucl. Phys. B 438 (1995) 413 [hep-th/9407117] [INSPIRE].

    Article  ADS  Google Scholar 

  8. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247 [hep-th/9604044] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Dorey and R. Tateo, Excited states in some simple perturbed conformal field theories, Nucl. Phys. B 515 (1998) 575 [hep-th/9706140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Destri and H. de Vega, Nonlinear integral equation and excited states scaling functions in the sine-Gordon model, Nucl. Phys. B 504 (1997) 621 [hep-th/9701107] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Feverati, F. Ravanini and G. Takács, Nonlinear integral equation and finite volume spectrum of sine-Gordon theory, Nucl. Phys. B 540 (1999) 543 [hep-th/9805117] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Feverati, F. Ravanini and G. Takács, Scaling functions in the odd charge sector of sine-Gordon/massive Thirring theory, Phys. Lett. B 444 (1998) 442 [hep-th/9807160] [INSPIRE].

    ADS  Google Scholar 

  14. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable quantum field theories in finite volume: excited state energies, Nucl. Phys. B 489 (1997) 487 [hep-th/9607099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. F.H. Essler and R.M. Konik, Applications of massive integrable quantum field theories to problems in condensed matter physics, cond-mat/0412421 [INSPIRE].

  17. A. Leclair, F. Lesage, S. Sachdev and H. Saleur, Finite temperature correlations in the one-dimensional quantum Ising model, Nucl. Phys. B 482 (1996) 579 [cond-mat/9606104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Leclair and G. Mussardo, Finite temperature correlation functions in integrable QFT, Nucl. Phys. B 552 (1999) 624 [hep-th/9902075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. B. Doyon, Finite-temperature form-factors: a review, SIGMA 3 (2007) 011 [hep-th/0611066] [INSPIRE].

    MathSciNet  Google Scholar 

  20. B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys. B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE].

    Article  ADS  Google Scholar 

  21. B. Pozsgay, Mean values of local operators in highly excited Bethe states, J. Stat. Mech. 01 (2011) P01011 [arXiv:1009.4662] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  22. F.H.L. Essler and R.M. Konik, Finite-temperature dynamical correlations in massive integrable quantum field theories, J. Stat. Mech. 09 (2009) P09018 [arXiv:0907.0779] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. H. Saleur, A comment on finite temperature correlations in integrable QFT, Nucl. Phys. B 567 (2000) 602 [hep-th/9909019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. I. Szécsényi, G. Takács and G. Watts, One-point functions in finite volume/temperature: a case study, arXiv:1304.3275 [INSPIRE].

  25. O. Castro-Alvaredo and A. Fring, Finite temperature correlation functions from form-factors, Nucl. Phys. B 636 (2002) 611 [hep-th/0203130] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Pozsgay and G. Takács, Form factor expansion for thermal correlators, J. Stat. Mech. 1011 (2010) P11012 [arXiv:1008.3810] [INSPIRE].

    Article  Google Scholar 

  27. B. Pozsgay, Finite volume form factors and correlation functions at finite temperature, arXiv:0907.4306 [INSPIRE].

  28. I. Szecsenyi and G. Takács, Spectral expansion for finite temperature two-point functions and clustering, J. Stat. Mech. 12 (2012) P12002 [arXiv:1210.0331] [INSPIRE].

    Article  Google Scholar 

  29. B. Pozsgay and G. Takács, Form-factors in finite volume I: form-factor bootstrap and truncated conformal space, Nucl. Phys. B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE].

    Article  ADS  Google Scholar 

  30. B. Pozsgay, Lüschers μ-term and finite volume bootstrap principle for scattering states and form factors, Nucl. Phys. B 802 (2008) 435 [arXiv:0803.4445] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Takács, Determining matrix elements and resonance widths from finite volume: the dangerous μ-terms, JHEP 11 (2011) 113 [arXiv:1110.2181] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F.A. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992) 1 [INSPIRE].

    Article  Google Scholar 

  33. H.M. Babujian, A. Foerster and M. Karowski, The form factor program: a review and new results: the nested SU(N) off-shell Bethe ansatz, SIGMA 2 (2006) 082 [hep-th/0609130] [INSPIRE].

    MathSciNet  Google Scholar 

  34. M. Gaudin, La function donde de Bethe pour les modèles exacts de la mécanique statistique (in French), Commisariat á l’énergie atomique, Paris France (1983).

  35. V. Korepin, N. Bogoliubov and A. Izergin, Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge U.K. (1993).

    Book  MATH  Google Scholar 

  36. T.R. Klassen and E. Melzer, On the relation between scattering amplitudes and finite size mass corrections in QFT, Nucl. Phys. B 362 (1991) 329 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. T. Palmai and G. Takács, Diagonal multi-soliton matrix elements in finite volume, Phys. Rev. D 87 (2013) 045010 [arXiv:1209.6034] [INSPIRE].

    ADS  Google Scholar 

  38. C.M. Bender and T.T. Wu, Anharmonic oscillator, Phys. Rev. 184 (1969) 1231 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. J. Teschner, On the spectrum of the sinh-Gordon model in finite volume, Nucl. Phys. B 799 (2008) 403 [hep-th/0702214] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Klümper and P.A. Pearce, Analytic calculation of scaling dimensions: tricritical hard squares and critical hard hexagons, J. Stat. Phys. 64 (1991) 13.

    Article  ADS  MATH  Google Scholar 

  41. A. Klümper and P. Pearce, Conformal weights of RSOS lattice models and their fusion hierarchies, Physica A 183 (1992) 304 [INSPIRE].

    ADS  Google Scholar 

  42. G. Delfino, P. Simonetti and J.L. Cardy, Asymptotic factorization of form-factors in two-dimensional quantum field theory, Phys. Lett. B 387 (1996) 327 [hep-th/9607046] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Pozsgay.

Additional information

ArXiv ePrint: 1305.3373

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozsgay, B. Form factor approach to diagonal finite volume matrix elements in Integrable QFT. J. High Energ. Phys. 2013, 157 (2013). https://doi.org/10.1007/JHEP07(2013)157

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)157

Keywords

Navigation