Skip to main content
Log in

Analytic calculation of scaling dimensions: Tricritical hard squares and critical hard hexagons

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The finite-size corrections, central chargesc, and scaling dimensionsx of tricritical hard squares and critical hard hexagons are calculated analytically. This is achieved by solving the special functional equation or inversion identity satisfied by the commuting row transfer matrices of these lattice models at criticality. The results are expressed in terms of Rogers dilogarithms. For tricritical hard squares we obtainc=7/10,x=3/40, 1/5, 7/8, 6/5 and for hard hexagons we obtainc=4/5,x=2/15, 4/5, 17/15, 4/3, 9/5, in accord with the predictions of conformal and modular invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phase Transitions and Critical Phenomena, Vol. 6 (Academic Press, London, 1976).

  2. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov,Nucl. Phys. B 241:333 (1984).

    Google Scholar 

  3. J. L. Cardy, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1988).

    Google Scholar 

  4. J. L. Cardy,Nucl. Phys. B 270[FS16]:186 (1986).

    Google Scholar 

  5. J. L. Cardy,Nucl. Phys. B 275[FS17]:200 (1986).

    Google Scholar 

  6. D. Friedan, Z. Qiu, and S. Shenker,Phys. Rev. Lett. 52:1575 (1984); inVertex Operators in Mathematics and Physics, J. Lepowsky, S. Mandelstam, and I. M. Singer, eds. (Springer, 1984).

    Google Scholar 

  7. V. G. Kac, inLecture Notes in Physics, Vol. 94 (1979), pp. 441–445.

    Google Scholar 

  8. H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale,Phys. Rev. Lett. 56:742 (1986).

    Google Scholar 

  9. I. Affleck,Phys. Rev. Lett. 56:746 (1986).

    Google Scholar 

  10. H. J. de Vega and F. Woynarovich,Nucl. Phys. B 251:439 (1985).

    Google Scholar 

  11. C. J. Hamer,J. Phys. A 18:L1133 (1985).

    Google Scholar 

  12. C. J. Hamer,J. Phys. A 19:3335 (1986).

    Google Scholar 

  13. F. Woynarovich and H.-P. Eckle,J. Phys. A 20:L97 (1987).

    Google Scholar 

  14. H. J. de Vega and M. Karowski,Nucl. Phys. B 285[FS19]:619 (1987).

    Google Scholar 

  15. F. Woynarovich,Phys. Rev. Lett. 59:259 (1987).

    Google Scholar 

  16. G. von Gehlen and V. Rittenberg,J. Phys. A 20:227 (1987).

    Google Scholar 

  17. P. A. Pearce and D. Kim,J. Phys. A 20:6471–6485 (1987).

    Google Scholar 

  18. F. C. Alcaraz, M. N. Barber, and M. T. Batchelor,Phys. Rev. Lett. 58:771 (1987).

    Google Scholar 

  19. F. C. Alcaraz, M. N. Barber, and M. T. Batchelor,Ann. Phys. (N.Y.) 182:280 (1988).

    Google Scholar 

  20. M. Karowski,Nucl. Phys. B 300[FS22]:473 (1988).

    Google Scholar 

  21. F. C. Alcaraz and M. J. Martins,J. Phys. A 23:1439–1451 (1990).

    Google Scholar 

  22. J.-Y. Choi, D. Kim, and P. A. Pearce,J. Phys. A 22:1661–1671 (1989).

    Google Scholar 

  23. A. N. Kirillov and N. Yu. Reshetikhin,J. Phys. A 19:565 (1986); V. V. Bazhanov and N. Yu. Reshetikhin,Int. J. Mod. Phys. A 4:115–142 (1989).

    Google Scholar 

  24. P. A. Pearce and A. Klümper,Phys. Rev. Lett. 66:974–977 (1991).

    Google Scholar 

  25. A. Klumper and M. T. Batchelor,J. Phys. A 23:L189 (1990).

    Google Scholar 

  26. R. J. Baxter,J. Phys. A 13:L61–70 (1980).

    Google Scholar 

  27. R. J. Baxter,Physica 106A:18–27 (1981).

    Google Scholar 

  28. R. J. Baxter,J. Stat. Phys. 26:427–452 (1981).

    Google Scholar 

  29. R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  30. R. J. Baxter and P. A. Pearce,J. Phys. A 15:897 (1982).

    Google Scholar 

  31. R. J. Baxter and P. A. Pearce,J. Phys. A 16:2239 (1983).

    Google Scholar 

  32. D. A. Huse,Phys. Rev. Lett. 49:1121–1124 (1982).

    Google Scholar 

  33. P. Ginsparg, Applied conformal field theory, inLes Houches, Session XLIV, Fields, Strings and Critical Phenomena, E. Brézin and J. Zinn-Justin, eds. (1989).

  34. P. Ginsparg, Some statistical mechanical models and conformal field theories, Trieste Spring School Lectures, HUTP-89/A027.

  35. P. A. Pearce,Int. J. Mod. Phys. B 4:715–734 (1990).

    Google Scholar 

  36. D. Kim and P. A. Pearce,J. Phys. A 20:L451–456 (1987).

    Google Scholar 

  37. A. Capelli, C. Itzykson, and J.-B. Zuber,Nucl. Phys. B 280[FS18]:445–465 (1987).

    Google Scholar 

  38. A. Capelli, C. Itzykson, and J.-B. Zuber,Commun. Math. Phys. 113:1–26 (1987).

    Google Scholar 

  39. A. Kalo,Mod. Phys. Lett. A 2:585 (1987).

    Google Scholar 

  40. V. Pasquier,Nucl. Phys. B 285[FS19]:162 (1987).

    Google Scholar 

  41. V. Pasquier,J. Phys. A 20:L217, L221 (1987).

    Google Scholar 

  42. G. E. Andrews, R. J. Baxter, and P. J. Forrester,J. Stat. Phys. 35:193 (1984).

    Google Scholar 

  43. A. Klümper, M. T. Batchelor, and P. A. Pearce,J. Phys. A, to appear (1991).

  44. L. Lewin,Dilogarithms and Associated Functions (MacDonald, London, 1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klümper, A., Pearce, P.A. Analytic calculation of scaling dimensions: Tricritical hard squares and critical hard hexagons. J Stat Phys 64, 13–76 (1991). https://doi.org/10.1007/BF01057867

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01057867

Key words

Navigation