Skip to main content
Log in

Supersymmetry in the shadow of photini

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Additional neutral gauge fermions — “photini” — arise in string compactifications as superpartners of U(1) gauge fields. Unlike their vector counterparts, the photini can acquire weak-scale masses from soft SUSY breaking and lead to observable signatures at the LHC through mass mixing with the bino. In this work we investigate the collider consequences of adding photini to the neutralino sector of the MSSM. Relatively large mixing of one or more photini with the bino can lead to prompt decays of the lightest ordinary supersymmetric particle; these extra cascades transfer most of the energy of SUSY decay chains into Standard Model particles, diminishing the power of missing energy as an experimental handle for signal discrimination. We demonstrate that the missing energy in SUSY events with photini is reduced dramatically for supersymmetric spectra with MSSM neutralinos near the weak scale, and study the effects on limits set by the leading hadronic SUSY searches at ATLAS and CMS. We find that in the presence of even one light photino the limits on squark masses from hadronic searches can be reduced by 400 GeV, with comparable (though more modest) reduction of gluino mass limits. We also consider potential discovery channels such as dilepton and multilepton searches, which remain sensitive to SUSY spectra with photini and can provide an unexpected route to the discovery of supersymmetry. Although presented in the context of photini, our results apply in general to theories in which additional light neutral fermions mix with MSSM gauginos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Combined search for the standard model higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  3. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    ADS  Google Scholar 

  6. R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy flavor simplified models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Y. Kats, P. Meade, M. Reece and D. Shih, The status of GMSB after fb −1 at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

  9. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].

    Article  ADS  Google Scholar 

  11. N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].

    Article  ADS  Google Scholar 

  13. N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G.D. Kribs and A. Martin, Supersoft supersymmetry is super-safe, arXiv:1203.4821 [INSPIRE].

  15. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  16. CMS collaboration, Search for supersymmetry with the razor variables at CMS, PAS-SUS-12-005 (2012).

  17. CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, PAS-SUS-11-004 (2011).

  18. ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, ATLAS-CONF-2012-033 (2012).

  19. T.J. LeCompte and S.P. Martin, Large Hadron Collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].

    ADS  Google Scholar 

  20. T.J. LeCompte and S.P. Martin, Compressed supersymmetry after fb −1 at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].

    ADS  Google Scholar 

  21. L.M. Carpenter, D.E. Kaplan and E.-J. Rhee, Reduced fine-tuning in supersymmetry with R-parity violation, Phys. Rev. Lett. 99 (2007) 211801 [hep-ph/0607204] [INSPIRE].

    Article  ADS  Google Scholar 

  22. C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].

    ADS  Google Scholar 

  23. H. Dreiner and T. Stefaniak, Bounds on R-parity violation from resonant slepton production at the LHC, arXiv:1201.5014 [INSPIRE].

  24. B. Allanach and B. Gripaios, Hide and seek with natural supersymmetry at the LHC, JHEP 05 (2012) 062 [arXiv:1202.6616] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P.W. Graham, D.E. Kaplan, S. Rajendran and P. Saraswat, Displaced supersymmetry, arXiv:1204.6038 [INSPIRE].

  26. J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Fan, M. Reece and J.T. Ruderman, A stealth supersymmetry sampler, arXiv:1201.4875 [INSPIRE].

  28. A. Arvanitaki, N. Craig, S. Dimopoulos, S. Dubovsky and J. March-Russell, String photini at the LHC, Phys. Rev. D 81 (2010) 075018 [arXiv:0909.5440] [INSPIRE].

    ADS  Google Scholar 

  29. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. C. Cheung, J. Mardon, Y. Nomura and J. Thaler, A definitive signal of multiple supersymmetry breaking, JHEP 07 (2010) 035 [arXiv:1004.4637] [INSPIRE].

    Article  ADS  Google Scholar 

  31. N. Craig, J. March-Russell and M. McCullough, The goldstini variations, JHEP 10 (2010) 095 DOI:dx.doi.org [arXiv:1007.1239] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D. Das, U. Ellwanger and A.M. Teixeira, Modified signals for supersymmetry in the NMSSM with a singlino-like LSP, JHEP 04 (2012) 067 [arXiv:1202.5244] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Abel, M. Goodsell, J. Jaeckel, V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Ibarra, A. Ringwald and C. Weniger, Hidden gauginos of an unbroken U(1): cosmological constraints and phenomenological prospects, JCAP 01 (2009) 003 [arXiv:0809.3196] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in large volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing string vacua in the lab: from a hidden CMB to dark forces in flux compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Goodsell, S. Ramos-Sanchez and A. Ringwald, Kinetic mixing of U(1)s in heterotic orbifolds, JHEP 01 (2012) 021 [arXiv:1110.6901] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    ADS  Google Scholar 

  40. S. Davidson and M.E. Peskin, Astrophysical bounds on millicharged particles in models with a paraphoton, Phys. Rev. D 49 (1994) 2114 [hep-ph/9310288] [INSPIRE].

    ADS  Google Scholar 

  41. S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Dubovsky, D. Gorbunov and G. Rubtsov, Narrowing the window for millicharged particles by CMB anisotropy, JETP Lett. 79 (2004) 1 [hep-ph/0311189] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A. Melchiorri, A. Polosa and A. Strumia, New bounds on millicharged particles from cosmology, Phys. Lett. B 650 (2007) 416 [hep-ph/0703144] [INSPIRE].

    ADS  Google Scholar 

  44. K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].

    ADS  Google Scholar 

  45. B. Holdom, Oblique electroweak corrections and an extra gauge boson, Phys. Lett. B 259 (1991) 329 [INSPIRE].

    ADS  Google Scholar 

  46. J.F. Gunion and H.E. Haber, Two-body decays of neutralinos and charginos, Phys. Rev. D 37 (1988) 2515 [INSPIRE].

    ADS  Google Scholar 

  47. LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, arXiv:1105.2838 [INSPIRE].

  48. J. Alwall, P. Schuster and N. Toro, Simplified models for a first characterization of new physics at the LHC, Phys. Rev. D 79 (2009) 075020 [arXiv:0810.3921] [INSPIRE].

    ADS  Google Scholar 

  49. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].

    ADS  Google Scholar 

  50. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  51. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    ADS  Google Scholar 

  52. L.E. Ibáñez, Locally supersymmetric SU(5) grand unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].

    ADS  Google Scholar 

  53. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  54. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].

    Article  ADS  Google Scholar 

  55. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Degrande et al., UFOThe universal FeynRules output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  59. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  60. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. Conway, PGSPretty Good Simulation of high energy collisions, http://physics.ucdavis.edu/conway/research/software/pgs/pgs4-general.htm.

  62. J.H.G. Landsberg and S. Jain, Simple limit calculator, http://www-d0.fnal.gov/Run2Physics/limit calc/limit calc.html.

  63. ATLAS collaboration, Search for a missing energy signature from New Physics in di-jet and multi-jet events, PAS-SUS-11-001 (2011).

  64. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  65. ATLAS collaboration, Search for supersymmetry with jets and missing transverse momentum: Additional model interpretations, ATLAS-CONF-2011-155 (2011).

  66. ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} = 7 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].

    Article  ADS  Google Scholar 

  67. CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy, arXiv:1205.6615 [INSPIRE].

  68. CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [INSPIRE].

    Article  ADS  Google Scholar 

  69. CMS Collaboration, Search for new physics in events with a Z boson and missing energy, CMS-PAS-SUS-11-017 (2011).

  70. CMS collaboration, S. Chatrchyan et al., Search for anomalous production of multilepton events in pp collisions at \( \sqrt {s} = 7 \) TeV, JHEP 06 (2012) 169 [arXiv:1204.5341] [INSPIRE].

    Article  ADS  Google Scholar 

  71. CMS collaboration, Search for new physics in events with opposite-sign dileptons and missing transverse energy, CMS-PAS-SUS-11-011 (2011).

  72. ATLAS collaboration, G. Aad et al., Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].

    Article  ADS  Google Scholar 

  73. ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7 \) TeV in final states with missing transverse momentum and b-jets with the ATLAS detector, Phys. Rev. D 85 (2012) 112006 [arXiv:1203.6193] [INSPIRE].

    ADS  Google Scholar 

  74. CMS collaboration, S. Chatrchyan et al., Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at \( \sqrt {s} = 7 \) TeV, arXiv:1205.3933 [INSPIRE].

  75. ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].

    ADS  Google Scholar 

  76. ATLAS collaboration, G. Aad et al., Search for supersymmetry in events with three leptons and missing transverse momentum in \( \sqrt {s} = 7 \) TeV pp collisions with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 261804 [arXiv:1204.5638] [INSPIRE].

    Article  ADS  Google Scholar 

  77. M. Lisanti, P. Schuster, M. Strassler and N. Toro, Study of LHC searches for a lepton and many jets, arXiv:1107.5055 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryakhtar, M., Craig, N. & Van Tilburg, K. Supersymmetry in the shadow of photini. J. High Energ. Phys. 2012, 164 (2012). https://doi.org/10.1007/JHEP07(2012)164

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)164

Keywords

Navigation