Skip to main content
Log in

Interaction of neutrinos with a cosmological k-essence scalar

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we study a novel means of coupling neutrinos to a Lorentz violating background k-essence field. We first look into the effect that k-essence has on the neutrino dispersion relation and derive a general formula for the neutrino velocity in the presence of a k-essence background. The influence of k-essence coupling on neutrino oscillations is then considered. It is found that if k-essence couples non-diagonally to the neutrino flavor eigenstates, then this leads to an oscillation length that goes like λ ∼ E −1, where E is the neutrino energy. This should be contrasted with the λ ∼ E dependence seen in mass-induced neutrino oscillations. While such a scenario is not favored experimentally, it places constraints on the possible interaction that a k-essence background can have with neutrinos by requiring it to be flavor diagonal. All nontrivial physical effects discussed here require the sound speed of k-essence fluctuations to be different from the speed of light, and hence are primarily a consequence of Lorentz violation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supernova Search Team collaboration, A.G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES].

    Article  ADS  Google Scholar 

  2. Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 High-Redshift Supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [SPIRES].

    Article  ADS  Google Scholar 

  3. Supernova Cosmology Project collaboration, S. Perlmutter et al., Discovery of a Supernova Explosion at Half the Age of the Universe and its Cosmological Implications, Nature 391 (1998) 51 [astro-ph/9712212] [SPIRES].

    Article  ADS  Google Scholar 

  4. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration, Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [SPIRES].

    Article  ADS  Google Scholar 

  5. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k-essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [SPIRES].

    ADS  Google Scholar 

  6. C. Bonvin, C. Caprini and R. Durrer, A no-go theorem for k-essence dark energy, Phys. Rev. Lett. 97 (2006) 081303 [astro-ph/0606584] [SPIRES].

    Article  ADS  Google Scholar 

  7. E. Babichev, V. Mukhanov and A. Vikman, k-Essence, superluminal propagation, causality and emergent geometry, JHEP 02 (2008) 101 [arXiv:0708.0561] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J .A. Casas, J . García-Bellido and M. Quirós, Scalar -tensor theories of gravity with phi dependent masses, Class. Quant. Grav. 9 (1992) 1371 [hep-ph/9204213] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  9. D.J . Holden and D. Wands, Self-similar cosmological solutions with a non-minimally coupled scalar field, Phys. Rev. D 61 (2000) 043506 [gr-qc/9908026] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. S.M. Carroll, Quintessence and the rest of the world, Phys. Rev. Lett. 81 (1998) 3067 [astro-ph/9806099] [SPIRES].

    Article  ADS  Google Scholar 

  11. T. Damour, G.W. Gibbons and C. Gundlach, Dark matter, time varying G, and a dilaton field, Phys. Rev. Lett. 64 (1990) 123 [SPIRES].

    Article  ADS  Google Scholar 

  12. S.S. Gubser and P.J.E. Peebles, Cosmology with a dynamically screened scalar interaction in the dark sector, Phys. Rev. D 70 (2004) 123511 [hep-th/0407097] [SPIRES].

    ADS  Google Scholar 

  13. G.R. Farrar and P.J.E. Peebles, Interacting Dark Matter and Dark Energy, Astrophys. J. 604 (2004) 1 [astro-ph/0307316] [SPIRES].

    Article  ADS  Google Scholar 

  14. S. Barshay and G. Kreyerhoff, Long-range interactions between dark-matter particles in a model with a cosmological, spontaneously-broken chiral symmetry, Mod. Phys. Lett. A 20 (2005) 1155 [astro-ph/0501021] [SPIRES].

    ADS  Google Scholar 

  15. O. Bertolami, F.G. Pedro and M.L. Delliou, Dark Energy-Dark Matter Interaction from the Abell Cluster A 586, arXiv:0801.0201 [SPIRES].

  16. M. Le Delliou, O. Bertolami and F. Gil Pedro, Dark Energy-Dark Matter Interaction from the Abell Cluster A586 and violation of the Equivalence Principle, A IP Conf. Proc. 957 (2007) 421 [arXiv:0709.2505] [SPIRES].

    ADS  Google Scholar 

  17. S.M. Carroll, S. Mantry, M.J. Ramsey-Musolf and C.W. Stubbs, Dark-Matter-Induced Weak Equivalence Principle Violation, Phys. Rev. Lett. 103 (2009) 011301 [arXiv:0807.4363] [SPIRES].

    Article  ADS  Google Scholar 

  18. R. Bean, E.E. Flanagan, I. Laszlo and M. Trodden, Constraining Interactions in Cosmology’s Dark Sector, Phys. Rev. D 78 (2008) 123514 [arXiv:0808.1105] [SPIRES].

    ADS  Google Scholar 

  19. R. Bean, E.E. Flanagan and M. Trodden, Adiabatic instability in coupled dark energy-dark matter models, Phys. Rev. D 78 (2008) 023009 [arXiv:0709.1128] [SPIRES].

    ADS  Google Scholar 

  20. S.R. Coleman and S.L. Glashow, Cosmic Ray and Neutrino Tests of Special Relativity, Phys. Lett. B 405 (1997) 249 [hep-ph/9703240] [SPIRES].

    ADS  Google Scholar 

  21. M. Gasperini, Testing the principle of equivalence with neutrino oscillations, Phys. Rev. D 38 (1988) 2635 [SPIRES].

    ADS  Google Scholar 

  22. A. Halprin and C.N. Leung, Can the sun shed light on neutrino gravitational interactions?, Phys. Rev. Lett. 67 (1991) 1833 [SPIRES].

    Article  ADS  Google Scholar 

  23. KAMIOKANDE-II collaboration, K. Hirata et al., Observation of a Neutrino Burst from the Supernova SN 1987a, Phys. Rev. Lett. 58 (1987) 1490 [SPIRES].

    Article  ADS  Google Scholar 

  24. R.M. Bionta et al., Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494 [SPIRES].

    Article  ADS  Google Scholar 

  25. L. Stodolsky, T he speed of light and the speed of neutrinos, Phys. Lett. B 201 (1988) 353 [SPIRES].

    ADS  Google Scholar 

  26. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].

    Article  ADS  Google Scholar 

  27. M. Malquarti, E.J. Copeland, A.R. Liddle and M. Trodden, A new view of k-essence, Phys. Rev. D 67 (2003) 123503 [astro-ph/0302279] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  28. R.J. Scherrer, Purely kinetic k-essence as unified dark matter, Phys. Rev. Lett. 93 (2004) 011301 [astro-ph/0402316] [SPIRES].

    Article  ADS  Google Scholar 

  29. S. Hannestad, Constraints on the sound speed of dark energy, Phys. Rev. D 71 (2005) 103519 [astro-ph/0504017] [SPIRES].

    ADS  Google Scholar 

  30. J.-Q. Xia, Y.-F. Cai, T.-T. Qiu, G.-B. Zhao and X. Zhang, Constraints on the Sound Speed of Dynamical Dark Energy, Int. J. Mod. Phys. D 17 (2008) 1229 [astro-ph/0703202] [SPIRES].

    ADS  Google Scholar 

  31. B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [SPIRES].

    Google Scholar 

  32. V. De Sabbata and M. Gasperini, Neutrino oscillations in the presence of torsion, Nuovo Cim. A 65 (1981) 479 [SPIRES].

    Article  ADS  Google Scholar 

  33. S.R. Coleman and S.L. Glashow, High-Energy Tests of Lorentz Invariance, Phys. Rev. D 59 (1999) 116008 [hep-ph/9812418] [SPIRES].

    ADS  Google Scholar 

  34. C.Y. Cardall and G.M. Fuller, Neutrino oscillations in curved spacetime: An heuristic treatment, Phys. Rev. D 55 (1997) 7960 [hep-ph/9610494] [SPIRES].

    ADS  Google Scholar 

  35. G. Papini, Quantum systems in weak gravitational fields, gr-qc/0110056 [SPIRES].

  36. N. Fornengo, C. Giunti, C.W. Kim and J. Song, Gravitational effects on the neutrino oscillation in vacuum, Nucl. Phys. Proc. Suppl. 70 (1999) 264 [hep-ph/9711494] [SPIRES].

    Article  ADS  Google Scholar 

  37. Y. Kojima, Gravitational correction in neutrino oscillations, Mod. Phys. Lett. A 11 (1996) 2965 [gr-qc/9612044] [SPIRES].

    ADS  Google Scholar 

  38. D. Piriz, M. Roy and J. Wudka, Neutrino Oscillations in Strong Gravitational Fields, Phys. Rev. D 54 (1996) 1587 [hep-ph/9604403] [SPIRES].

    ADS  Google Scholar 

  39. B. Kayser, On the Quantum Mechanics of Neutrino Oscillation, Phys. Rev. D 24 (1981) 110 [SPIRES].

    ADS  Google Scholar 

  40. J. Rich, The Quantum mechanics of neutrino oscillations, Phys. Rev. D 48 (1993) 4318 [SPIRES].

    ADS  Google Scholar 

  41. C. Giunti, C.W. Kim, J.A. Lee and U.W. Lee, On the treatment of neutrino oscillations without resort to weak eigenstates, Phys. Rev. D 48 (1993) 4310 [hep-ph/9305276] [SPIRES].

    ADS  Google Scholar 

  42. Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [SPIRES].

    Article  ADS  Google Scholar 

  43. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from the 391-day salt phase SNO data set, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [SPIRES].

    ADS  Google Scholar 

  44. G.L. Fogli, E. Lisi, A. Marrone and G. Scioscia, Testing violations of special and general relativity through the energy dependence of ν μ <ν τ oscillations in the Super-Kamiokande atmospheric neutrino experiment, Phys. Rev. D 60 (1999) 053006 [hep-ph/9904248] [SPIRES].

    ADS  Google Scholar 

  45. T. Katori, V.A. Kostelecky and R. Tayloe, Global three-parameter model for neutrino oscillations using Lorentz violation, Phys. Rev. D 74 (2006) 105009 [hep-ph/0606154] [SPIRES].

    ADS  Google Scholar 

  46. LSND collaboration, C. Athanassopoulos et al., Evidence for ν μ →ν e neutrino oscillations from LSND, Phys. Rev. Lett. 81 (1998) 1774 [nucl-ex/9709006] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Gauthier.

Additional information

ArXiv ePrint: 0911.3168

This work was supported by the US department of energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier, C.S., Saotome, R. & Akhoury, R. Interaction of neutrinos with a cosmological k-essence scalar. J. High Energ. Phys. 2010, 62 (2010). https://doi.org/10.1007/JHEP07(2010)062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)062

Keywords

Navigation