Skip to main content
Log in

Slow-roll inflation in non-geometric flux compactification

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

By implementing a genetic algorithm we search for stable vacua in Type IIB non-geometric flux compactification on an isotropic torus with orientifold 3-planes. We find that the number of stable dS and AdS vacua are of the same order. Moreover we find that in all dS vacua the multi-field slow-roll inflationary conditions are fulfilled. Specifically we observe that inflation is driven by the axio-dilaton and the Kähler moduli. We also comment on the existence of one stable dS vacuum in the presence of exotic orientifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-branes at del Pezzo singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D. Martinez-Pedrera, D. Mehta, M. Rummel and A. Westphal, Finding all flux vacua in an explicit example, arXiv:1212.4530 [INSPIRE].

  4. J. Louis, M. Rummel, R. Valandro and A. Westphal, Building an explicit de Sitter, JHEP 10 (2012) 163 [arXiv:1208.3208] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. X. Chen, G. Shiu, Y. Sumitomo and S.H. Tye, A global view on the search for de-Sitter vacua in (type IIA) string theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Shiu and Y. Sumitomo, Stability constraints on classical de Sitter vacua, JHEP 09 (2011) 052 [arXiv:1107.2925] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. U.H. Danielsson et al., De Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Saltman and E. Silverstein, A new handle on de Sitter compactifications, JHEP 01 (2006) 139 [hep-th/0411271] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys. Rev. D 79 (2009) 086005 [arXiv:0810.5328] [INSPIRE].

    ADS  Google Scholar 

  11. M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, De Sitter string vacua from dilaton-dependent non-perturbative effects, JHEP 06 (2012) 011 [arXiv:1203.1750] [INSPIRE].

    Article  ADS  Google Scholar 

  12. U.H. Danielsson, P. Koerber and T. Van Riet, Universal de Sitter solutions at tree-level, JHEP 05 (2010) 090 [arXiv:1003.3590] [INSPIRE].

    Article  ADS  Google Scholar 

  13. L. Covi et al., De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].

    ADS  Google Scholar 

  16. X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].

    ADS  Google Scholar 

  19. M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Marsh, L. McAllister and T. Wrase, The wasteland of random supergravities, JHEP 03 (2012) 102 [arXiv:1112.3034] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Baumann and L. McAllister, Advances in inflation in string theory, Ann. Rev. Nucl. Part. Sci. 59 (2009) 67 [arXiv:0901.0265] [INSPIRE].

    Article  ADS  Google Scholar 

  22. B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP 02 (2007) 095 [hep-th/0607015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys. B 706 (2005) 127 [hep-th/0404217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Aldazabal, P.G. Camara, A. Font and L. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].

    Article  ADS  Google Scholar 

  27. P.G. Camara, A. Font and L. Ibáñez, Fluxes, moduli fixing and MSSM-like vacua in a simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Dibitetto, A. Guarino and D. Roest, Exceptional flux compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Guarino and G.J. Weatherill, Non-geometric flux vacua, S-duality and algebraic geometry, JHEP 02 (2009) 042 [arXiv:0811.2190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Font, A. Guarino and J.M. Moreno, Algebras and non-geometric flux vacua, JHEP 12 (2008) 050 [arXiv:0809.3748] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].

    Article  Google Scholar 

  32. J.P. Conlon and F.G. Pedro, Moduli redefinitions and moduli stabilisation, JHEP 06 (2010) 082 [arXiv:1003.0388] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. B. de Carlos, A. Guarino and J.M. Moreno, Flux moduli stabilisation, supergravity algebras and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].

    Article  Google Scholar 

  34. U.H. Danielsson, G. Shiu, T. Van Riet and T. Wrase, A note on obstinate tachyons in classical dS solutions, JHEP 03 (2013) 138 [arXiv:1212.5178] [INSPIRE].

    Article  ADS  Google Scholar 

  35. U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Blaback, U. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluxes, arXiv:1301.7073 [INSPIRE].

  37. B. de Carlos, J. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].

    ADS  Google Scholar 

  38. T. Banks, M. Berkooz, S. Shenker, G.W. Moore and P. Steinhardt, Modular cosmology, Phys. Rev. D 52 (1995) 3548 [hep-th/9503114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. M. Cicoli, J.P. Conlon and F. Quevedo, Systematics of string loop corrections in type IIB Calabi-Yau flux compactifications, JHEP 01 (2008) 052 [arXiv:0708.1873] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. J.P. Conlon and F. Quevedo, Astrophysical and cosmological implications of large volume string compactifications, JCAP 08 (2007) 019 [arXiv:0705.3460] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. M. Cicoli and A. Mazumdar, Inflation in string theory: a graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [INSPIRE].

    ADS  Google Scholar 

  43. M. Cicoli, F.G. Pedro and G. Tasinato, Poly-instanton inflation, JCAP 12 (2011) 022 [arXiv:1110.6182] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Cicoli and F. Quevedo, String moduli inflation: an overview, Class. Quant. Grav. 28 (2011) 204001 [arXiv:1108.2659] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Kallosh, On inflation in string theory, Lect. Notes Phys. 738 (2008) 119 [hep-th/0702059] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Borghese, R. Linares and D. Roest, Minimal stability in maximal supergravity, JHEP 07 (2012) 034 [arXiv:1112.3939] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Borghese, D. Roest and I. Zavala, A geometric bound on F-term inflation, JHEP 09 (2012) 021 [arXiv:1203.2909] [INSPIRE].

    Article  ADS  Google Scholar 

  48. C. Damian and O. Loaiza-Brito, Towards cosmological models by compactification on a non-geometric twisted torus, J. Phys. Conf. Ser. 378 (2012) 012002 [INSPIRE].

    Article  ADS  Google Scholar 

  49. D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A.R. Frey and J. Polchinski, N = 3 warped compactifications, Phys. Rev. D 65 (2002) 126009 [hep-th/0201029] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. L. Abbott and S. Deser, Stability of gravity with a cosmological constant, Nucl. Phys. B 195 (1982) 76 [INSPIRE].

    Article  ADS  Google Scholar 

  53. J.-P. Gazeau and M. Novello, The nature of Λ and the mass of the graviton: a critical view, Int. J. Mod. Phys. A 26 (2011) 3697 [Int. J. Mod. Phys. Conf. Ser. 03 (2011) 3] [gr-qc/0610054] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. G. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological problems for the Polonyi potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].

    ADS  Google Scholar 

  55. T. Banks, M. Berkooz and P. Steinhardt, The cosmological moduli problem, supersymmetry breaking and stability in postinflationary cosmology, Phys. Rev. D 52 (1995) 705 [hep-th/9501053] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Loaiza-Brito.

Additional information

ArXiv ePrint: 1302.0529

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damian, C., Díaz-Barrón, L.R., Loaiza-Brito, O. et al. Slow-roll inflation in non-geometric flux compactification. J. High Energ. Phys. 2013, 109 (2013). https://doi.org/10.1007/JHEP06(2013)109

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)109

Keywords

Navigation