Skip to main content
Log in

A geometric bound on F-term inflation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll parameters and the geometry of the Kähler manifold of the chiral scalars. We analyse the inflationary implications of this bound, and in particular discuss to what extent the requirements of single field and slow-roll can both be met in F-term inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  2. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Planck collaboration, P. Ade et al., Planck early results. I. The Planck mission, Astron. Astrophys. 536 (2011) 16464 [arXiv:1101.2022] [INSPIRE].

    Google Scholar 

  5. L. McAllister and E. Silverstein, String cosmology: a review, Gen. Rel. Grav. 40 (2008) 565 [arXiv:0710.2951] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Agarwal, R. Bean, L. McAllister and G. Xu, Universality in D-brane inflation, JCAP 09 (2011) 002 [arXiv:1103.2775] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Gomez-Reino and C.A. Scrucca, Locally stable non-supersymmetric Minkowski vacua in supergravity, JHEP 05 (2006) 015 [hep-th/0602246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Gomez-Reino and C.A. Scrucca, Constraints for the existence of flat and stable non-supersymmetric vacua in supergravity, JHEP 09 (2006) 008 [hep-th/0606273] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Gomez-Reino, J. Louis and C.A. Scrucca, No metastable de Sitter vacua in N = 2 supergravity with only hypermultiplets, JHEP 02 (2009) 003 [arXiv:0812.0884] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. L. Covi et al., Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Achucarro, S. Mooij, P. Ortiz and M. Postma, Sgoldstino inflation, arXiv:1203.1907 [INSPIRE].

  16. D. Freedman and A. Van Proeyen, Supergravity, to be published by Cambridge University Press, Cambridge U.K. (2012).

  17. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Coupling supersymmetric Yang-Mills theories to supergravity, Phys. Lett. B 116 (1982) 231 [INSPIRE].

    ADS  Google Scholar 

  18. L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Minimal inflation, Phys. Lett. B 690 (2010) 68 [arXiv:1001.0010] [INSPIRE].

    ADS  Google Scholar 

  19. L. Álvarez-Gaumé, C. Gomez and R. Jimenez, A minimal inflation scenario, JCAP 03 (2011) 027 [arXiv:1101.4948] [INSPIRE].

    Article  Google Scholar 

  20. L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Phenomenology of the minimal inflation scenario: inflationary trajectories and particle production, JCAP 03 (2012) 017 [arXiv:1110.3984] [INSPIRE].

    Article  Google Scholar 

  21. D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].

    ADS  Google Scholar 

  24. X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP 10 (2004) 006 [astro-ph/0407059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. C.T. Byrnes and K.-Y. Choi, Review of local non-Gaussianity from multi-field inflation, Adv. Astron. 2010 (2010) 724525 [arXiv:1002.3110] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].

    ADS  Google Scholar 

  28. R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Borghese.

Additional information

ArXiv ePrint: 1203.2909

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borghese, A., Roest, D. & Zavala, I. A geometric bound on F-term inflation. J. High Energ. Phys. 2012, 21 (2012). https://doi.org/10.1007/JHEP09(2012)021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)021

Keywords

Navigation