Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The Ultraviolet Behavior of N = 8 Supergravity at Four Loops, Phys. Rev. Lett.
103 (2009) 081301 [arXiv:0905.2326] [INSPIRE].
G. Bossard, P.S. Howe, K.S. Stelle and P. Vanhove, The vanishing volume of D = 4 superspace, Class. Quant. Grav.
28 (2011) 215005 [arXiv:1105.6087] [INSPIRE].
Z. Bern et al., Ultraviolet Properties of
\( \mathcal{N}=8 \)
Supergravity at Five Loops, Phys. Rev.
D 98 (2018) 086021 [arXiv:1804.09311] [INSPIRE].
H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys.
B 269 (1986) 1 [INSPIRE].
Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys.
B 530 (1998) 401 [hep-th/9802162] [INSPIRE].
Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett.
105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].
S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP
02 (2013) 127 [arXiv:1210.1110] [INSPIRE].
A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP
04 (2017) 069 [arXiv:1611.07508] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Luna, R. Monteiro, I. Nicholson, D. O’Connell and C.D. White, The double copy: Bremsstrahlung and accelerating black holes, JHEP
06 (2016) 023 [arXiv:1603.05737] [INSPIRE].
W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev.
D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].
A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from Charged Scalar Amplitudes, JHEP
03 (2018) 044 [arXiv:1711.03901] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables and Classical Scattering, JHEP
02 (2019) 137 [arXiv:1811.10950] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order, arXiv:1901.04424 [INSPIRE].
A. Antonelli, A. Buonanno, J. Steinhoff, M. van de Meent and J. Vines, Energetics of two-body Hamiltonians in post-Minkowskian gravity, arXiv:1901.07102 [INSPIRE].
A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory, arXiv:1703.05448 [INSPIRE].
F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].
Z. Bern, S. Davies and J. Nohle, On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons, Phys. Rev.
D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].
S. He, Y.-t. Huang and C. Wen, Loop Corrections to Soft Theorems in Gauge Theories and Gravity, JHEP
12 (2014) 115 [arXiv:1405.1410] [INSPIRE].
ADS
Article
Google Scholar
P. Vecchia, R. Marotta and M. Mojaza, Multiloop Soft Theorem for Gravitons and Dilatons in the Bosonic String, JHEP
01 (2019) 038 [arXiv:1808.04845] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
A.J. Larkoski, D. Neill and I.W. Stewart, Soft Theorems from Effective Field Theory, JHEP
06 (2015) 077 [arXiv:1412.3108] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP
01 (2007) 064 [hep-th/0607160] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP
06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.
B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys.
B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP
09 (2008) 062 [arXiv:0807.3196] [INSPIRE].
A. Brandhuber, P. Heslop and G. Travaglini, A Note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev.
D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].
J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N = 4 super Yang-Mills theory, JHEP
05 (2009) 046 [arXiv:0902.2987] [INSPIRE].
S. Caron-Huot and J.M. Henn, Solvable Relativistic Hydrogenlike System in Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.
113 (2014) 161601 [arXiv:1408.0296] [INSPIRE].
ADS
Article
Google Scholar
Z. Bern, M. Enciso, H. Ita and M. Zeng, Dual Conformal Symmetry, Integration-by-Parts Reduction, Differential Equations and the Nonplanar Sector, Phys. Rev.
D 96 (2017) 096017 [arXiv:1709.06055] [INSPIRE].
R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudes — Wilson loops duality for the first non-planar correction, JHEP
08 (2018) 122 [arXiv:1802.09395] [INSPIRE].
Z. Bern, M. Enciso, C.-H. Shen and M. Zeng, Dual Conformal Structure Beyond the Planar Limit, Phys. Rev. Lett.
121 (2018) 121603 [arXiv:1806.06509] [INSPIRE].
ADS
Article
Google Scholar
D. Chicherin, J.M. Henn and E. Sokatchev, Implications of nonplanar dual conformal symmetry, JHEP
09 (2018) 012 [arXiv:1807.06321] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Bianchi, A. Brandhuber, R. Panerai and G. Travaglini, Dual conformal invariance for form factors, JHEP
02 (2019) 134 [arXiv:1812.10468] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Caron-Huot and Z. Zahraee, Integrability of Black Hole Orbits in Maximal Supergravity, arXiv:1810.04694 [INSPIRE].
A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett.
B 595 (2004) 521 [Erratum ibid.
B 632 (2006) 754] [hep-th/0404092] [INSPIRE].
A.V. Kotikov and L.N. Lipatov, On the highest transcendentality in N = 4 SUSY, Nucl. Phys.
B 769 (2007) 217 [hep-th/0611204] [INSPIRE].
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar Scattering Amplitudes, JHEP
06 (2012) 125 [arXiv:1012.6032] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
ADS
Article
Google Scholar
N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity Structure of Maximally Supersymmetric Scattering Amplitudes, Phys. Rev. Lett.
113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].
ADS
Article
Google Scholar
P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, MSc Thesis (2016) [https://publications.ub.uni-mainz.de/theses/frontdoor.php?sourceopus=100001967].
H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman Integrals in Baikov representation, JHEP
04 (2017) 083 [arXiv:1701.07356] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Harley, F. Moriello and R.M. Schabinger, Baikov-Lee Representations Of Cut Feynman Integrals, JHEP
06 (2017) 049 [arXiv:1705.03478] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys.
B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].
D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master integrals for three-jet production at NNLO, arXiv:1812.11160 [INSPIRE].
D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop five-particle amplitude in
\( \mathcal{N}=8 \)
supergravity, JHEP
03 (2019) 115 [arXiv:1901.05932] [INSPIRE].
S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in
\( \mathcal{N}=8 \)
supergravity, JHEP
03 (2019) 123 [arXiv:1901.08563] [INSPIRE].
S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys.
B 805 (2008) 40 [arXiv:0805.2347] [INSPIRE].
A. Brandhuber, P. Heslop, A. Nasti, B. Spence and G. Travaglini, Four-point Amplitudes in N = 8 Supergravity and Wilson Loops, Nucl. Phys.
B 807 (2009) 290 [arXiv:0805.2763] [INSPIRE].
C. Boucher-Veronneau and L.J. Dixon, N ≥ 4 Supergravity Amplitudes from Gauge Theory at Two Loops, JHEP
12 (2011) 046 [arXiv:1110.1132] [INSPIRE].
Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, D.A. Kosower and R. Roiban, Three-Loop Superfiniteness of N = 8 Supergravity, Phys. Rev. Lett.
98 (2007) 161303 [hep-th/0702112] [INSPIRE].
Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest Ultraviolet Behavior for the Three-Loop Four-Point Amplitude of N = 8 Supergravity, Phys. Rev.
D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].
Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev.
D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Logarithmic Singularities and Maximally Supersymmetric Amplitudes, JHEP
06 (2015) 202 [arXiv:1412.8584] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.L. Bourjaily, E. Herrmann and J. Trnka, Maximally supersymmetric amplitudes at infinite loop momentum, Phys. Rev.
D 99 (2019) 066006 [arXiv:1812.11185] [INSPIRE].
J.M. Henn and B. Mistlberger, Four-Gluon Scattering at Three Loops, Infrared Structure and the Regge Limit, Phys. Rev. Lett.
117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].
ADS
Article
Google Scholar
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.
A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
J. Bartels, L.N. Lipatov and A. Sabio Vera, Double-logarithms in Einstein-Hilbert gravity and supergravity, JHEP
07 (2014) 056 [arXiv:1208.3423] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP
09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Adams and S. Weinzierl, The ε-form of the differential equations for Feynman integrals in the elliptic case, Phys. Lett.
B 781 (2018) 270 [arXiv:1802.05020] [INSPIRE].
J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic Feynman integrals and pure functions, JHEP
01 (2019) 023 [arXiv:1809.10698] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys.
211 (2004) 1.
MathSciNet
MATH
Google Scholar
A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res. Lett.
5 (1998) 497 [arXiv:1105.2076] [INSPIRE].
E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP
03 (2014) 071 [arXiv:1401.4361] [INSPIRE].
ADS
Article
Google Scholar
C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP
10 (2012) 075 [arXiv:1110.0458] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun.
188 (2015) 148 [arXiv:1403.3385] [INSPIRE].
ADS
Article
MATH
Google Scholar
C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP
08 (2012) 043 [arXiv:1203.0454] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.
174 (2006) 222 [hep-ph/0507152] [INSPIRE].
S. Weinberg, Infrared photons and gravitons, Phys. Rev.
140 (1965) B516 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Akhoury, R. Saotome and G. Sterman, Collinear and Soft Divergences in Perturbative Quantum Gravity, Phys. Rev.
D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].
M. Beneke and G. Kirilin, Soft-collinear gravity, JHEP
09 (2012) 066 [arXiv:1207.4926] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Van Nieuwenhuizen, Radiation of massive gravitation, Phys. Rev.
D 7 (1973) 2300 [INSPIRE].
S.G. Naculich and H.J. Schnitzer, Eikonal methods applied to gravitational scattering amplitudes, JHEP
05 (2011) 087 [arXiv:1101.1524] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP
05 (2011) 060 [arXiv:1103.2981] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Ø. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft anomalous dimension in multileg scattering, Phys. Rev. Lett.
117 (2016) 172002 [arXiv:1507.00047] [INSPIRE].
ADS
Article
Google Scholar
Ø. Almelid, C. Duhr, E. Gardi, A. McLeod and C.D. White, Bootstrapping the QCD soft anomalous dimension, JHEP
09 (2017) 073 [arXiv:1706.10162] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C.D. White, An Introduction to Webs, J. Phys.
G 43 (2016) 033002 [arXiv:1507.02167] [INSPIRE].
Z. Bern, J. Parra-Martinez and R. Roiban, Canceling the U(1) Anomaly in the S Matrix of N = 4 Supergravity, Phys. Rev. Lett.
121 (2018) 101604 [arXiv:1712.03928] [INSPIRE].
Z. Bern, A. Edison, D. Kosower and J. Parra-Martinez, Curvature-squared multiplets, evanescent effects and the U(1) anomaly in N = 4 supergravity, Phys. Rev.
D 96 (2017) 066004 [arXiv:1706.01486] [INSPIRE].
Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet Properties of N = 4 Supergravity at Four Loops, Phys. Rev. Lett.
111 (2013) 231302 [arXiv:1309.2498] [INSPIRE].
J.J.M. Carrasco, R. Kallosh, R. Roiban and A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix of N = 4 supergravity, JHEP
07 (2013) 029 [arXiv:1303.6219] [INSPIRE].
D.Z. Freedman, R. Kallosh, D. Murli, A. Van Proeyen and Y. Yamada, Absence of U(1) Anomalous Superamplitudes in
\( \mathcal{N}\ge 5 \)
Supergravities, JHEP
05 (2017) 067 [arXiv:1703.03879] [INSPIRE].
R. Kallosh, Cancellation of Conformal and Chiral Anomalies in
\( \mathcal{N}\ge 5 \)
supergravities, Phys. Rev.
D 95 (2017) 041701 [arXiv:1612.08978] [INSPIRE].
J. Bjornsson and M.B. Green, 5 loops in 24/5 dimensions, JHEP
08 (2010) 132 [arXiv:1004.2692] [INSPIRE].
P. Vanhove, The Critical ultraviolet behaviour of N = 8 supergravity amplitudes, arXiv:1004.1392 [INSPIRE].
J.B. Tausk, Nonplanar massless two loop Feynman diagrams with four on-shell legs, Phys. Lett.
B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].
J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP
03 (2014) 088 [arXiv:1312.2588] [INSPIRE].
D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys.
B 433 (1995) 181 [hep-th/9408014] [INSPIRE].
M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys.
B 198 (1982) 474 [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.
A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys.
B 546 (1999) 423 [hep-th/9811140] [INSPIRE].
S.B. Giddings and R.A. Porto, The Gravitational S-matrix, Phys. Rev.
D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].
S.B. Giddings, M. Schmidt-Sommerfeld and J.R. Andersen, High energy scattering in gravity and supergravity, Phys. Rev.
D 82 (2010) 104022 [arXiv:1005.5408] [INSPIRE].
H.J. Schnitzer, Reggeization of N = 8 supergravity and N = 4 Yang-Mills theory. II., arXiv:0706.0917 [INSPIRE].
D. Amati, M. Ciafaloni and G. Veneziano, Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions, Nucl. Phys.
B 347 (1990) 550 [INSPIRE].