Advertisement

On exponentially suppressed corrections to BMPV black hole entropy

  • Shailesh Lal
  • Prithvi Narayan
Open Access
Regular Article - Theoretical Physics
  • 41 Downloads

Abstract

The microscopic formula for the degeneracy of BMPV black hole microstates contains a series of exponentially suppressed corrections to the leading Bekenstein Hawking expression. We identify saddle points of the quantum entropy function for the BMPV black hole which are natural counterparts to these corrections and discuss the matching of leading and next-to-leading terms from the microscopic and macroscopic sides in a limit where the black hole charges are large.

Keywords

AdS-CFT Correspondence Black Holes in String Theory Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE].
  2. [2]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal type II string theory, hep-th/9903163 [INSPIRE].
  5. [5]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic N = 4 string states and black hole entropy, JHEP 12(2004) 075[hep-th/0412287] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    D. Shih, A. Strominger and X. Yin, Recounting dyons in N = 4 string theory, JHEP 10 (2006) 087 [hep-th/0505094] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    D.P. Jatkar and A. Sen, Dyon spectrum in CHL models, JHEP 04 (2006) 018 [hep-th/0510147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Dabholkar and S. Nampuri, Spectrum of dyons and black holes in CHL orbifolds using Borcherds lift, JHEP 11 (2007) 077 [hep-th/0603066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    J.R. David, D.P. Jatkar and A. Sen, Product representation of dyon partition function in CHL models, JHEP 06 (2006) 064 [hep-th/0602254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in N = 4 supersymmetric type II string theories, JHEP 11 (2006) 073 [hep-th/0607155] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.R. David and A. Sen, CHL dyons and statistical entropy function from D1-D5 system, JHEP 11 (2006) 072 [hep-th/0605210] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in generic N = 4 supersymmetric Z N orbifolds, JHEP 01 (2007) 016 [hep-th/0609109] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Sen, N = 8 dyon partition function and walls of marginal stability, JHEP 07 (2008) 118 [arXiv:0803.1014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Sen, Arithmetic of N = 8 black holes, JHEP 02 (2010) 090 [arXiv:0908.0039] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    I. Mandal and A. Sen, Black hole microstate counting and its macroscopic counterpart, Nucl. Phys. Proc. Suppl. 216 (2011) 147 [arXiv:1008.3801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Dabholkar and S. Nampuri, Quantum black holes, Lect. Notes Phys. 851 (2012) 165 [arXiv:1208.4814] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    P. Figueras, H.K. Kunduri, J. Lucietti and M. Rangamani, Extremal vacuum black holes in higher dimensions, Phys. Rev. D 78 (2008) 044042 [arXiv:0803.2998] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    A. Sen, Quantum entropy function from AdS 2 /CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    A. Sen, Arithmetic of quantum entropy function, JHEP 08 (2009) 068 [arXiv:0903.1477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    A. Sen, Logarithmic corrections to N = 2 black hole entropy: an infrared window into the microstates, Gen. Rel. Grav. 44 (2012) 1207 [arXiv:1108.3842] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    R.K. Gupta, S. Lal and S. Thakur, Logarithmic corrections to extremal black hole entropy in N = 2, 4 and 8 supergravity, JHEP 11 (2014) 072 [arXiv:1402.2441] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    A. Dabholkar, J. Gomes and S. Murthy, Localization & exact holography, JHEP 04 (2013) 062 [arXiv:1111.1161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    R.K. Gupta and S. Murthy, All solutions of the localization equations for N = 2 quantum black hole entropy, JHEP 02 (2013) 141 [arXiv:1208.6221] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    A. Dabholkar, J. Gomes and S. Murthy, Nonperturbative black hole entropy and Kloosterman sums, JHEP 03 (2015) 074 [arXiv:1404.0033] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    S. Murthy and V. Reys, Functional determinants, index theorems and exact quantum black hole entropy, JHEP 12 (2015) 028 [arXiv:1504.01400] [INSPIRE].ADSMathSciNetGoogle Scholar
  29. [29]
    R.K. Gupta, Y. Ito and I. Jeon, Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets, JHEP 11 (2015) 197 [arXiv:1504.01700] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    S. Murthy and V. Reys, Single-centered black hole microstate degeneracies from instantons in supergravity, JHEP 04 (2016) 052 [arXiv:1512.01553] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    J. Gomes, Quantum entropy and exact 4d/5d connection, JHEP 01 (2015) 109 [arXiv:1305.2849] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Gomes, Exact holography and black hole entropy in N = 8 and N = 4 string theory, JHEP 07 (2017) 022 [arXiv:1511.07061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    J. Gomes, Quantum black hole entropy, localization and the stringy exclusion principle, arXiv:1705.01953 [INSPIRE].
  34. [34]
    J. Gomes, Generalized Kloosterman sums from M2-branes, arXiv:1705.04348 [INSPIRE].
  35. [35]
    J. Gomes, U-duality invariant quantum entropy from sums of Kloosterman sums, arXiv:1709.06579 [INSPIRE].
  36. [36]
    N. Banerjee, D.P. Jatkar and A. Sen, Asymptotic expansion of the N = 4 dyon degeneracy, JHEP 05 (2009) 121 [arXiv:0810.3472] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S. Banerjee, A. Sen and Y.K. Srivastava, Partition functions of torsion > 1 dyons in heterotic string theory on T 6, JHEP 05 (2008) 098 [arXiv:0802.1556] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A. Dabholkar, J. Gomes and S. Murthy, Counting all dyons in N = 4 string theory, JHEP 05 (2011) 059 [arXiv:0803.2692] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    N. Banerjee, S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Supersymmetry, localization and quantum entropy function, JHEP 02 (2010) 091 [arXiv:0905.2686] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    R.K. Gupta, S. Lal and S. Thakur, Heat kernels on the AdS 2 cone and logarithmic corrections to extremal black hole entropy, JHEP 03 (2014) 043 [arXiv:1311.6286] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Banerjee, R.K. Gupta and A. Sen, Logarithmic corrections to extremal black hole entropy from quantum entropy function, JHEP 03 (2011) 147 [arXiv:1005.3044] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Banerjee, R.K. Gupta, I. Mandal and A. Sen, Logarithmic corrections to N = 4 and N = 8 black hole entropy: a one loop test of quantum gravity, JHEP 11(2011) 143 [arXiv:1106.0080] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  43. [43]
    A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions, JHEP 04 (2013) 156 [arXiv:1205.0971] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Chaudhuri and J. Polchinski, Moduli space of CHL strings, Phys. Rev. D 52 (1995) 7168 [hep-th/9506048] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Chaudhuri and D.A. Lowe, Type IIA heterotic duals with maximal supersymmetry, Nucl. Phys. B 459 (1996) 113 [hep-th/9508144] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S. Chaudhuri, G. Hockney and J.D. Lykken, Maximally supersymmetric string theories in D < 10, Phys. Rev. Lett. 75 (1995) 2264 [hep-th/9505054] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    P.S. Aspinwall, Some relationships between dualities in string theory, Nucl. Phys. Proc. Suppl. 46 (1996) 30 [hep-th/9508154] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    N. Banerjee, I. Mandal and A. Sen, Black hole hair removal, JHEP 07 (2009) 091 [arXiv:0901.0359] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    A. Sen, Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Black holes of D = 5 supergravity, Class. Quant. Grav. 16 (1999) 1 [hep-th/9810204] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    B. de Wit and S. Katmadas, Near-horizon analysis of D = 5 BPS black holes and rings, JHEP 02 (2010) 056 [arXiv:0910.4907] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    A. Sen, State operator correspondence and entanglement in AdS 2 /CFT 1, Entropy 13 (2011) 1305 [arXiv:1101.4254] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A one-loop test of quantum supergravity, Class. Quant. Grav. 31 (2014) 015012 [arXiv:1210.6057] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    A. Dabholkar, J. Gomes, S. Murthy and A. Sen, Supersymmetric index from black hole entropy, JHEP 04 (2011) 034 [arXiv:1009.3226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    D.P. Jatkar, A. Sen and Y.K. Srivastava, Black hole hair removal: non-linear analysis, JHEP 02 (2010) 038 [arXiv:0907.0593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept. 196 (1990) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    R. Camporesi and A. Higuchi, Spectral functions and zeta functions in hyperbolic spaces, J. Math. Phys. 35 (1994) 4217 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    R. Camporesi and A. Higuchi, On the eigen functions of the Dirac operator on spheres and real hyperbolic spaces, J. Geom. Phys. 20 (1996) 1 [gr-qc/9505009] [INSPIRE].
  61. [61]
    R. Camporesi and A. Higuchi, The Plancherel measure for p-forms in real hyperbolic spaces, J. Geom. Phys. 15 (1994) 57.ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.LPTHE — UMR 7589, CNRS & UPMCParisFrance
  2. 2.International Centre for Theoretical SciencesBengaluru NorthIndia

Personalised recommendations