Skip to main content
Log in

Black hole hair removal: non-linear analysis

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

BMPV black holes in flat transverse space and in Taub-NUT space have identical near horizon geometries but different microscopic degeneracies. It has been proposed that this difference can be accounted for by different contribution to the degeneracies of these black holes from hair modes, — degrees of freedom living outside the horizon. In this paper we explicitly construct the hair modes of these two black holes as finite bosonic and fermionic deformations of the black hole solution satisfying the full non-linear equations of motion of supergravity and preserving the supersymmetry of the original solutions. Special care is taken to ensure that these solutions do not have any curvature singularity at the future horizon when viewed as the full ten dimensional geometry. We show that after removing the contribution due to the hair degrees of freedom from the microscopic partition function, the partition functions of the two black holes agree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. T. Jacobson, G. Kang and R.C. Myers, Black hole entropy in higher curvature gravity, gr-qc/9502009 [SPIRES].

  5. A. Sen, Quantum entropy function from AdS 2/CFT 1 correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [SPIRES].

    Google Scholar 

  6. J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  7. J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, Counting dyons in N = 4 string theory, Nucl. Phys. B 484 (1997) 543 [hep-th/9607026] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Asymptotic degeneracy of dyonic N = 4 string states and black hole entropy, JHEP 12 (2004) 075 [hep-th/0412287] [SPIRES].

    ADS  Google Scholar 

  12. D. Shih, A. Strominger and X. Yin, Recounting dyons in N = 4 string theory, JHEP 10 (2006) 087 [hep-th/0505094] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. D. Gaiotto, Re-recounting dyons in N = 4 string theory, hep-th/0506249 [SPIRES].

  14. J.R. David and A. Sen, CHL dyons and statistical entropy function from D1-D5 system, JHEP 11 (2006) 072 [hep-th/0605210] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  16. N. Banerjee, I. Mandal and A. Sen, Black hole hair removal, JHEP 07 (2009) 091 [arXiv:0901.0359] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. N. Kaloper, R.C. Myers and H. Roussel, Wavy strings: black or bright?, Phys. Rev. D 55 (1997) 7625 [hep-th/9612248] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. G.T. Horowitz and H.-S. Yang, Black strings and classical hair, Phys. Rev. D 55 (1997) 7618 [hep-th/9701077] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. G.T. Horowitz and D. Marolf, Counting states of black strings with traveling waves, Phys. Rev. D 55 (1997) 835 [hep-th/9605224] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. G.T. Horowitz and D. Marolf, Counting states of black strings with traveling waves. II, Phys. Rev. D 55 (1997) 846 [hep-th/9606113] [SPIRES].

    ADS  Google Scholar 

  21. R. Brooks, R. Kallosh and T. Ortín, Fermion zero modes and black hole hypermultiplet with rigid supersymmetry, Phys. Rev. D 52 (1995) 5797 [hep-th/9505116] [SPIRES].

    ADS  Google Scholar 

  22. L.J. Romans, Selfduality for interacting fields: covariant field equations for six-dimensional chiral supergravities, Nucl. Phys. B 276 (1986) 71 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. F. Riccioni, Tensor multiplets in six-dimensional (2, 0) supergravity, Phys. Lett. B 422 (1998) 126 [hep-th/9712176] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS 3 × S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Garfinkle and T. Vachaspati, Cosmic string traveling waves, Phys. Rev. D 42 (1990) 1960 [SPIRES].

    ADS  Google Scholar 

  26. F. Larsen and F. Wilczek, Internal structure of black holes, Phys. Lett. B 375 (1996) 37 [hep-th/9511064] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. F. Larsen and F. Wilczek, Classical hair in string theory I: general formulation, Nucl. Phys. B 475 (1996) 627 [hep-th/9604134] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. F. Larsen and F. Wilczek, Classical hair in string theory. II: explicit calculations, Nucl. Phys. B 488 (1997) 261 [hep-th/9609084] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Cvetič and A.A. Tseytlin, Solitonic strings and BPS saturated dyonic black holes, Phys. Rev. D 53 (1996) 5619 [Erratum ibid. D 55 (1997) 3907] [hep-th/9512031] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dileep P. Jatkar.

Additional information

ArXiv ePrint: 0907.0593

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jatkar, D.P., Sen, A. & Srivastava, Y.K. Black hole hair removal: non-linear analysis. J. High Energ. Phys. 2010, 38 (2010). https://doi.org/10.1007/JHEP02(2010)038

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)038

Keywords

Navigation