Advertisement

Carroll limit of non-BPS Dp-brane

  • J. Klusoň
Open Access
Regular Article - Theoretical Physics

Abstract

We find Carroll non-BPS Dp-brane action by performing Carroll limit of a canonical form of unstable Dp-brane action. We analyze different Carroll limits and discuss solutions of the equations of motion of Carroll non-BPS Dp-brane at the tachyon vacuum.

Keywords

D-branes Tachyon Condensation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  2. [2]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    A. Wang, Hořava gravity at a Lifshitz point: a progress report, Int. J. Mod. Phys. D 26 (2017) 1730014 [arXiv:1701.06087] [INSPIRE].CrossRefGoogle Scholar
  4. [4]
    E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei gravity, JHEP 03 (2017) 165 [arXiv:1701.06156] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E.A. Bergshoeff and J. Rosseel, Three-dimensional extended Bargmann supergravity, Phys. Rev. Lett. 116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Hartong, Gauging the Carroll algebra and ultra-relativistic gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan (super)gravity as a non-relativistic limit, Class. Quant. Grav. 32 (2015) 205003 [arXiv:1505.02095] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    R. Andringa, E. Bergshoeff, S. Panda and M. de Roo, Newtonian gravity and the Bargmann algebra, Class. Quant. Grav. 28 (2011) 105011 [arXiv:1011.1145] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    E. Bergshoeff, J. Rosseel and T. Zojer, Newton-Cartan supergravity with torsion and Schrödinger supergravity, JHEP 11 (2015) 180 [arXiv:1509.04527] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic conformal field theories, Phys. Rev. Lett. 105 (2010) 171601 [arXiv:1006.3354] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Bagchi and R. Fareghbal, BMS/GCA redux: towards flatspace holography from non-relativistic symmetries, JHEP 10 (2012) 092 [arXiv:1203.5795] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. de Boer and S.N. Solodukhin, A holographic reduction of Minkowski space-time, Nucl. Phys. B 665 (2003) 545 [hep-th/0303006] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  13. [13]
    G. Arcioni and C. Dappiaggi, Exploring the holographic principle in asymptotically flat spacetimes via the BMS group, Nucl. Phys. B 674 (2003) 553 [hep-th/0306142] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    G. Barnich and C. Troessaert, Aspects of the BMS/CFT correspondence, JHEP 05 (2010) 062 [arXiv:1001.1541] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Flat holography: aspects of the dual field theory, JHEP 12 (2016) 147 [arXiv:1609.06203] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. VII. Waves from axi-symmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21 [INSPIRE].
  17. [17]
    R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128 (1962) 2851 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups, J. Phys. A 47 (2014) 335204 [arXiv:1403.4213] [INSPIRE].MathSciNetMATHGoogle Scholar
  19. [19]
    C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    H. Bacry and J. Levy-Leblond, Possible kinematics, J. Math. Phys. 9 (1968) 1605 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127 [hep-th/0009181] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10 (2000) 020 [hep-th/0009182] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    J. Gomis, K. Kamimura and P.K. Townsend, Non-relativistic superbranes, JHEP 11 (2004) 051 [hep-th/0409219] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: a new soluble sector of AdS 5 × S 5, JHEP 12 (2005) 024 [hep-th/0507036] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Klusoň, Non-relativistic non-BPS Dp-brane, Nucl. Phys. B 765 (2007) 185 [hep-th/0610073] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    J. Gomis and P.K. Townsend, The Galilean superstring, JHEP 02 (2017) 105 [arXiv:1612.02759] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP 02 (2017) 049 [arXiv:1611.00026] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Bagchi, Tensionless strings and Galilean conformal algebra, JHEP 05 (2013) 141 [arXiv:1303.0291] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless strings from worldsheet symmetries, JHEP 01 (2016) 158 [arXiv:1507.04361] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Bagchi, S. Chakrabortty and P. Parekh, Tensionless superstrings: view from the worldsheet, JHEP 10 (2016) 113 [arXiv:1606.09628] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll particles, Class. Quant. Grav. 31 (2014) 205009 [arXiv:1405.2264] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    E. Bergshoeff, J. Gomis and L. Parra, The symmetries of the Carroll superparticle, J. Phys. A 49 (2016) 185402 [arXiv:1503.06083] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  34. [34]
    E.A. Bergshoeff, J. Hartong and J. Rosseel, Torsional Newton-Cartan geometry and the Schrödinger algebra, Class. Quant. Grav. 32 (2015) 135017 [arXiv:1409.5555] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  35. [35]
    B. Cardona, J. Gomis and J.M. Pons, Dynamics of Carroll strings, JHEP 07 (2016) 050 [arXiv:1605.05483] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A. Sen, Supersymmetric world-volume action for non-BPS D-branes, JHEP 10 (1999) 008 [hep-th/9909062] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    E.A. Bergshoeff, M. de Roo, T.C. de Wit, E. Eyras and S. Panda, T-duality and actions for non-BPS D-branes, JHEP 05 (2000) 009 [hep-th/0003221] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J. Klusoň, Proposal for non-Bogomol’nyi-Prasad-Sommerfield D-brane action, Phys. Rev. D 62 (2000) 126003 [hep-th/0004106] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    A. Sen, Fundamental strings in open string theory at the tachyonic vacuum, J. Math. Phys. 42 (2001) 2844 [hep-th/0010240] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    A. Sen, Open and closed strings from unstable D-branes, Phys. Rev. D 68 (2003) 106003 [hep-th/0305011] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    J. Klusoň, Note about unstable D-branes with dynamical tension, Phys. Rev. D 94 (2016) 046004 [arXiv:1605.09510] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Klusoň, Remark about non-BPS Dp-brane at the tachyon vacuum moving in curved background, Phys. Rev. D 72 (2005) 106005 [hep-th/0504062] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations