Skip to main content
Log in

Inertial frames without the relativity principle

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Ever since the work of von Ignatowsky circa 1910 it has been known (if not always widely appreciated) that the relativity principle, combined with the basic and fun- damental physical assumptions of locality, linearity, and isotropy, leads almost uniquely to either the Lorentz transformations of special relativity or to Galileo’s transformations of classical Newtonian mechanics. Consequently, if one wishes (for whatever reason) to entertain the possibility of Lorentz symmetry breaking within the context of the class of local physical theories, then it seems likely that one will have to abandon (or at the very least grossly modify) the relativity principle. Working within the framework of local physics, we reassess the notion of spacetime transformations between inertial frames in the absence of the relativity principle, arguing that significant and nontrivial physics can still be extracted as long as the transformations are at least linear. An interesting technical aspect of the analysis is that the transformations now form a groupoid /pseudo-group — it is this technical point that permits one to evade the von Ignatowsky argument. Even in the absence of a relativity principle we can (assuming locality and linearity) nevertheless deduce clear and compelling rules for the transformation of space and time, rules for the composition of 3-velocities, and rules for the transformation of energy and momentum. Within this framework, the energy-momentum transformations are in general affine, but may be chosen to be linear, with the 4-component vector P = (E, −p T) trans- forming as a row vector, while the 4-component vector of space-time position X = (t, x T)T transforms as a column vector. As part of the analysis we identify two particularly elegant and physically compelling models implementing “minimalist” violations of Lorentz invariance — in the first of these minimalist models all Lorentz violations are confined to carefully delineated particle physics sub-sectors, while the second minimalist Lorentz-violating model depends on one free func- tion of absolute velocity, but otherwise preserves as much as possible of standard Lorentz invariant physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. von Ignatowsky, Einige allgemeine Bemerkungen zum Relativitätsprinzip, Verh. Deutsch. Phys. Ges. 12 (1910) 788.

    Google Scholar 

  2. W. von Ignatowsky, Einige allgemeine Bemerkungen zum Relativitätsprinzip, Phys. Z. 11 (1910) 972.

    Google Scholar 

  3. W. von Ignatowsky, Das Relativitätsprinzip, Arch. Math. Phys. 17 (1911) 1 [Arch. Math. Phys. 18 (1911) 17].

    Google Scholar 

  4. W. von Ignatowsky, Eine Bemerkung zu meiner Arbeit ‘Einige allgemeine Bemerkungen zum Relativitätsprinzip’, Phys. Z. 12 (1911) 779.

    MATH  Google Scholar 

  5. P. Frank and H. Rothe, Über die Transformation der Raumzeitkoordinaten von ruhenden auf bewegte Systeme, Annalen Phys. 339 (1911) 825.

    Article  ADS  Google Scholar 

  6. P. Frank and H. Rothe, Zur Herleitung der Lorentz Transformation, Phys. Z. 13 (1912) 750.

    MATH  Google Scholar 

  7. A.N. Whitehead, An enquiry concerning the principles of natural knowledge, Cambridge University Press, Cambridge U.K. (1919), chapter XIII.

  8. L.A. Pars, The Lorentz transformation, Philos. Mag. 42 (1921) 249.

    Article  MATH  Google Scholar 

  9. V. Lalan, Sur les postulats qui sont à la base des cinématiques, B. Soc. Math. Fr. 65 (1937) 83.

    MathSciNet  Google Scholar 

  10. F. Severi, Aspetti matematici dei legami tra relatività e senso comune, in Cinquant’anni di relatività, M. Pantaleo ed., Giunti, Firenze Italy (1955), pp. 309–333.

    Google Scholar 

  11. Y.P. Terletskii, Paradoxes in the theory of relativity, Plenum, New York U.S.A. (1968).

    Google Scholar 

  12. G. Süssmann, Begründung der Lorentz-Gruppe allein mit Symmetrie- und Relativitäts-Annahmen, Z. Naturforsch. A 24 (1969) 495.

    ADS  Google Scholar 

  13. V. Berzi and V. Gorini, Reciprocity principle and the Lorentz transformations, J. Math. Phys. 10 (1969) 1518 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. V. Gorini and A. Zecca, Isotropy of space, J. Math. Phys. 11 (1970) 2226.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. V. Gorini, Linear kinematical groups, Commun. Math. Phys. 21 (1971) 150 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. L.A. Lugiato and V. Gorini, On the structure of relativity groups, J. Math. Phys. 13 (1972) 665 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. V. Berzi and V. Gorini, On space-time, reference frames and the structure of relativity groups, Ann. Poincaré Phys. Theor. 16 (1972) 1 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  18. A.R. Lee and T.M. Kalotas, Lorentz transformations from the first postulate, Am. J. Phys. 43 (1975) 434.

    Article  ADS  Google Scholar 

  19. J.-M. Lévy-Leblond, One more derivation of the Lorentz transformation, Am. J. Phys. 44 (1976) 271.

    Article  ADS  Google Scholar 

  20. A.M. Srivastava, Invariant speed in special relativity, Am. J. Phys. 49 (1981) 504.

    Article  ADS  Google Scholar 

  21. W. Rindler, Essential relativity: special, general, and cosmological, second edition, Springer, New York U.S.A. (1977), pp. 51–53.

  22. M. Jammer, Some foundational problems in the special theory of relativity, in Problems in the foundations of physics, G. Toraldo di Francia ed., North-Holland, Amsterdam Netherlands (1979), pp. 202–236.

  23. R. Torretti, Relativity and geometry, Dover, New York U.S.A. (1996), pp. 76–82.

  24. V.A. Fock, The theory of space, time and gravitation, revised second edition, Pergamon Press (1964).

  25. S. Liberati, S. Sonego and M. Visser, Faster than c signals, special relativity and causality, Annals Phys. 298 (2002) 167 [gr-qc/0107091] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. D. Colladay and V.A. Kostelecky, Lorentz violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [INSPIRE].

    ADS  Google Scholar 

  27. V.A. Kostelecky and S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory, Phys. Rev. D 39 (1989) 683 [INSPIRE].

    ADS  Google Scholar 

  28. V.A. Kostelecky, Gravity, Lorentz violation and the standard model, Phys. Rev. D 69 (2004) 105009 [hep-th/0312310] [INSPIRE].

    ADS  Google Scholar 

  29. V.A. Kostelecky and R. Lehnert, Stability, causality and Lorentz and CPT violation, Phys. Rev. D 63 (2001) 065008 [hep-th/0012060] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. V.A. Kostelecky and M. Mewes, Signals for Lorentz violation in electrodynamics, Phys. Rev. D 66 (2002) 056005 [hep-ph/0205211] [INSPIRE].

    ADS  Google Scholar 

  31. V.A. Kostelecky and M. Mewes, Lorentz and CPT violation in neutrinos, Phys. Rev. D 69 (2004) 016005 [hep-ph/0309025] [INSPIRE].

    ADS  Google Scholar 

  32. V.A. Kostelecky and C.D. Lane, Constraints on Lorentz violation from clock comparison experiments, Phys. Rev. D 60 (1999) 116010 [hep-ph/9908504] [INSPIRE].

    ADS  MATH  Google Scholar 

  33. V.A. Kostelecky and M. Mewes, Cosmological constraints on Lorentz violation in electrodynamics, Phys. Rev. Lett. 87 (2001) 251304 [hep-ph/0111026] [INSPIRE].

    Article  ADS  Google Scholar 

  34. D. Bear, R.E. Stoner, R.L. Walsworth, V.A. Kostelecky and C.D. Lane, Limit on Lorentz and CPT violation of the neutron using a two species noble gas maser, Phys. Rev. Lett. 85 (2000) 5038 [Erratum ibid. 89 (2002) 209902] [physics/0007049] [INSPIRE].

  35. P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].

    ADS  Google Scholar 

  36. M. Visser, Lorentz symmetry breaking as a quantum field theory regulator, Phys. Rev. D 80 (2009) 025011 [arXiv:0902.0590] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. M. Visser, Power-counting renormalizability of generalized Hořava gravity, arXiv:0912.4757 [INSPIRE].

  38. T.P. Sotiriou, M. Visser and S. Weinfurtner, Quantum gravity without Lorentz invariance, JHEP 10 (2009) 033 [arXiv:0905.2798] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. T.P. Sotiriou, M. Visser and S. Weinfurtner, Phenomenologically viable Lorentz-violating quantum gravity, Phys. Rev. Lett. 102 (2009) 251601 [arXiv:0904.4464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. S. Weinfurtner, T.P. Sotiriou and M. Visser, Projectable Hořava-Lifshitz gravity in a nutshell, J. Phys. Conf. Ser. 222 (2010) 012054 [arXiv:1002.0308] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Visser, Status of Hořava gravity: a personal perspective, J. Phys. Conf. Ser. 314 (2011) 012002 [arXiv:1103.5587] [INSPIRE].

    Article  ADS  Google Scholar 

  42. C. Barceló, S. Liberati and M. Visser, Analogue gravity, Living Rev. Rel. 8 (2005) 12 [gr-qc/0505065] [INSPIRE].

    Google Scholar 

  43. M. Visser, Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quant. Grav. 15 (1998) 1767 [gr-qc/9712010] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. M. Visser, C. Barceló and S. Liberati, Acoustics in Bose-Einstein condensates as an example of broken Lorentz symmetry, hep-th/0109033 [INSPIRE].

  45. C. Barceló, S. Liberati and M. Visser, Analog gravity from Bose-Einstein condensates, Class. Quant. Grav. 18 (2001) 1137 [gr-qc/0011026] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. D. Anselmi, Renormalization and Lorentz symmetry violation, PoS(CLAQG08)010 [INSPIRE].

  47. D. Anselmi and D. Buttazzo, Distance between quantum field theories as a measure of Lorentz violation, Phys. Rev. D 84 (2011) 036012 [arXiv:1105.4209] [INSPIRE].

    ADS  Google Scholar 

  48. D. Anselmi, Renormalization of Lorentz violating theories, talk given at the 4th Meeting on CPT and Lorentz Symmetry, Bloomington U.S.A., 8–11 Aug 2007 [INSPIRE].

  49. D. Anselmi and M. Taiuti, Vacuum Cherenkov radiation in quantum electrodynamics with high-energy Lorentz violation, Phys. Rev. D 83 (2011) 056010 [arXiv:1101.2019] [INSPIRE].

    ADS  Google Scholar 

  50. D. Anselmi and E. Ciuffoli, Low-energy phenomenology of scalarless standard-model extensions with high-energy Lorentz violation, Phys. Rev. D 83 (2011) 056005 [arXiv:1101.2014] [INSPIRE].

    ADS  Google Scholar 

  51. D. Anselmi and E. Ciuffoli, Renormalization of high-energy Lorentz violating four fermion models, Phys. Rev. D 81 (2010) 085043 [arXiv:1002.2704] [INSPIRE].

    ADS  Google Scholar 

  52. D. Anselmi and M. Taiuti, Renormalization of high-energy Lorentz violating QED, Phys. Rev. D 81 (2010) 085042 [arXiv:0912.0113] [INSPIRE].

    ADS  Google Scholar 

  53. D. Anselmi, Standard model without elementary scalars and high energy Lorentz violation, Eur. Phys. J. C 65 (2010) 523 [arXiv:0904.1849] [INSPIRE].

    Article  ADS  Google Scholar 

  54. D. Anselmi, Weighted power counting, neutrino masses and Lorentz violating extensions of the standard model, Phys. Rev. D 79 (2009) 025017 [arXiv:0808.3475] [INSPIRE].

    ADS  Google Scholar 

  55. D. Anselmi, Weighted power counting and Lorentz violating gauge theories. II: Classification, Annals Phys. 324 (2009) 1058 [arXiv:0808.3474] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. D. Anselmi, Weighted power counting and Lorentz violating gauge theories. I: General properties, Annals Phys. 324 (2009) 874 [arXiv:0808.3470] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. D. Anselmi, Weighted scale invariant quantum field theories, JHEP 02 (2008) 051 [arXiv:0801.1216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. D. Anselmi and M. Halat, Renormalization of Lorentz violating theories, Phys. Rev. D 76 (2007) 125011 [arXiv:0707.2480] [INSPIRE].

    ADS  Google Scholar 

  59. H.B. Nielsen and M. Ninomiya, β-function in a noncovariant Yang-Mills theory, Nucl. Phys. B 141 (1978) 153 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. S. Chadha and H.B. Nielsen, Lorentz invariance as a low-energy phenomenon, Nucl. Phys. B 217 (1983) 125 [INSPIRE].

    Article  ADS  Google Scholar 

  61. H.B. Nielsen and I. Picek, Lorentz noninvariance, Nucl. Phys. B 211 (1983) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  62. H.B. Nielsen and I. Picek, Lorentz noninvariance. (Addendum) On a possible subtraction for the Lorentz noninvariant model, Nucl. Phys. B 242 (1984) 542 [INSPIRE].

    Google Scholar 

  63. H.B. Nielsen and I. Picek, Redei like model and testing Lorentz invariance, Phys. Lett. B 114 (1982) 141 [INSPIRE].

    ADS  Google Scholar 

  64. S.R. Coleman and S.L. Glashow, Cosmic ray and neutrino tests of special relativity, Phys. Lett. B 405 (1997) 249 [hep-ph/9703240] [INSPIRE].

    ADS  Google Scholar 

  65. S.R. Coleman and S.L. Glashow, High-energy tests of Lorentz invariance, Phys. Rev. D 59 (1999) 116008 [hep-ph/9812418] [INSPIRE].

    ADS  Google Scholar 

  66. G. Amelino-Camelia, J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos and S. Sarkar, Tests of quantum gravity from observations of gamma-ray bursts, Nature 393 (1998) 763 [astro-ph/9712103] [INSPIRE].

    Article  ADS  Google Scholar 

  67. R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys. Rev. D 59 (1999) 124021 [gr-qc/9809038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  68. T. Kifune, Invariance violation extends the cosmic ray horizon?, Astrophys. J. 518 (1999) L21 [astro-ph/9904164] [INSPIRE].

    Article  ADS  Google Scholar 

  69. R. Aloisio, P. Blasi, P.L. Ghia and A.F. Grillo, Probing the structure of space-time with cosmic rays, Phys. Rev. D 62 (2000) 053010 [astro-ph/0001258] [INSPIRE].

    ADS  Google Scholar 

  70. G. Amelino-Camelia and T. Piran, Planck scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV gamma paradoxes, Phys. Rev. D 64 (2001) 036005 [astro-ph/0008107] [INSPIRE].

    ADS  Google Scholar 

  71. S. Liberati, T.A. Jacobson and D. Mattingly, High-energy constraints on Lorentz symmetry violations, hep-ph/0110094 [INSPIRE].

  72. T. Jacobson, S. Liberati and D. Mattingly, TeV astrophysics constraints on Planck scale Lorentz violation, Phys. Rev. D 66 (2002) 081302 [hep-ph/0112207] [INSPIRE].

    ADS  Google Scholar 

  73. T. Jacobson, S. Liberati and D. Mattingly, Threshold effects and Planck scale Lorentz violation: combined constraints from high-energy astrophysics, Phys. Rev. D 67 (2003) 124011 [hep-ph/0209264] [INSPIRE].

    ADS  Google Scholar 

  74. D. Mattingly, T. Jacobson and S. Liberati, Threshold configurations in the presence of Lorentz violating dispersion relations, Phys. Rev. D 67 (2003) 124012 [hep-ph/0211466] [INSPIRE].

    ADS  Google Scholar 

  75. T. Jacobson, S. Liberati and D. Mattingly, A strong astrophysical constraint on the violation of special relativity by quantum gravity, Nature 424 (2003) 1019 [astro-ph/0212190] [INSPIRE].

    Article  ADS  Google Scholar 

  76. T. Jacobson, S. Liberati and D. Mattingly, Comments on ‘Improved limit on quantum space-time modifications of Lorentz symmetry from observations of gamma-ray blazars’, gr-qc/0303001 [INSPIRE].

  77. T.A. Jacobson, S. Liberati, D. Mattingly and F.W. Stecker, New limits on Planck scale Lorentz violation in QED, Phys. Rev. Lett. 93 (2004) 021101 [astro-ph/0309681] [INSPIRE].

    Article  ADS  Google Scholar 

  78. T. Jacobson, S. Liberati and D. Mattingly, Quantum gravity phenomenology and Lorentz violation, Springer Proc. Phys. 98 (2005) 83 [gr-qc/0404067] [INSPIRE].

    Article  Google Scholar 

  79. T. Jacobson, S. Liberati and D. Mattingly, Astrophysical bounds on Planck suppressed Lorentz violation, Lect. Notes Phys. 669 (2005) 101 [hep-ph/0407370] [INSPIRE].

    Article  ADS  Google Scholar 

  80. T. Jacobson, S. Liberati and D. Mattingly, Lorentz violation at high energy: concepts, phenomena and astrophysical constraints, Annals Phys. 321 (2006) 150 [astro-ph/0505267] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  81. D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5 [gr-qc/0502097] [INSPIRE].

    Google Scholar 

  82. OPERA collaboration, T. Adam et al., Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [INSPIRE].

  83. MINOS collaboration, P. Adamson et al., Measurement of neutrino velocity with the MINOS detectors and NuMI neutrino beam, Phys. Rev. D 76 (2007) 072005 [arXiv:0706.0437] [INSPIRE].

    ADS  Google Scholar 

  84. G. Amelino-Camelia et al., OPERA — reassessing data on the energy dependence of the speed of neutrinos, Int. J. Mod. Phys. D 20 (2011) 2623 [arXiv:1109.5172] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, OPERA neutrinos and deformed special relativity, Mod. Phys. Lett. A 27 (2012) 1250063 [arXiv:1110.0521] [INSPIRE].

    ADS  Google Scholar 

  86. G.F. Giudice, S. Sibiryakov and A. Strumia, Interpreting OPERA results on superluminal neutrino, Nucl. Phys. B 861 (2012) 1 [arXiv:1109.5682] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A.G. Cohen and S.L. Glashow, Pair creation constrains superluminal neutrino propagation, Phys. Rev. Lett. 107 (2011) 181803 [arXiv:1109.6562] [INSPIRE].

    Article  ADS  Google Scholar 

  88. G. Dvali and A. Vikman, Price for environmental neutrino-superluminality, JHEP 02 (2012) 134 [arXiv:1109.5685] [INSPIRE].

    Article  ADS  Google Scholar 

  89. J. Alexandre, J. Ellis and N.E. Mavromatos, On the possibility of superluminal neutrino propagation, Phys. Lett. B 706 (2012) 456 [arXiv:1109.6296] [INSPIRE].

    ADS  Google Scholar 

  90. G. Cacciapaglia, A. Deandrea and L. Panizzi, Superluminal neutrinos in long baseline experiments and SN1987a, JHEP 11 (2011) 137 [arXiv:1109.4980] [INSPIRE].

    Article  ADS  Google Scholar 

  91. X.-J. Bi, P.-F. Yin, Z.-H. Yu and Q. Yuan, Constraints and tests of the OPERA superluminal neutrinos, Phys. Rev. Lett. 107 (2011) 241802 [arXiv:1109.6667] [INSPIRE].

    Article  ADS  Google Scholar 

  92. F.R. Klinkhamer, Superluminal muon-neutrino velocity from a Fermi-point-splitting model of Lorentz violation, arXiv:1109.5671 [INSPIRE].

  93. S.S. Gubser, Superluminal neutrinos and extra dimensions: constraints from the null energy condition, Phys. Lett. B 705 (2011) 279 [arXiv:1109.5687] [INSPIRE].

    ADS  Google Scholar 

  94. A. Kehagias, Relativistic superluminal neutrinos, arXiv:1109.6312 [INSPIRE].

  95. P. Wang, H. Wu and H. Yang, Superluminal neutrinos and domain walls, arXiv:1109.6930 [INSPIRE].

  96. E.N. Saridakis, Superluminal neutrinos in Hořava-Lifshitz gravity, arXiv:1110.0697 [INSPIRE].

  97. W. Winter, Constraints on the interpretation of the superluminal motion of neutrinos at OPERA, Phys. Rev. D 85 (2012) 017301 [arXiv:1110.0424] [INSPIRE].

    ADS  Google Scholar 

  98. J. Alexandre, Lifshitz-type quantum field theories in particle physics, Int. J. Mod. Phys. A 26 (2011) 4523 [arXiv:1109.5629] [INSPIRE].

    ADS  Google Scholar 

  99. F.R. Klinkhamer and G.E. Volovik, Superluminal neutrino and spontaneous breaking of Lorentz invariance, Pisma Zh. Eksp. Teor. Fiz. 94 (2011) 731 [arXiv:1109.6624] [INSPIRE].

    Google Scholar 

  100. R. Cowsik, S. Nussinov and U. Sarkar, Superluminal neutrinos at OPERA confront pion decay kinematics, Phys. Rev. Lett. 107 (2011) 251801 [arXiv:1110.0241] [INSPIRE].

    Article  ADS  Google Scholar 

  101. L. Maccione, S. Liberati and D.M. Mattingly, Violations of Lorentz invariance in the neutrino sector after OPERA, arXiv:1110.0783 [INSPIRE].

  102. N.D.H. Dass, OPERA, SN1987a and energy dependence of superluminal neutrino velocity, arXiv:1110.0351 [INSPIRE].

  103. J.M. Carmona and J.L. Cortes, Constraints from neutrino decay on superluminal velocities, arXiv:1110.0430 [INSPIRE].

  104. V. Baccetti, K. Tate and M. Visser, Lorentz violating kinematics: threshold theorems, JHEP 03 (2012) 087 [arXiv:1111.6340] [INSPIRE].

    Article  ADS  Google Scholar 

  105. ICARUS collaboration, M. Antonello et al., Measurement of the neutrino velocity with the ICARUS detector at the CNGS beam, arXiv:1203.3433 [INSPIRE].

  106. G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35 [gr-qc/0012051] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  107. G. Amelino-Camelia, Particle-dependent deformations of Lorentz symmetry, arXiv:1111.5643 [INSPIRE].

  108. G. Amelino-Camelia, Doubly special relativity, Nature 418 (2002) 34 [gr-qc/0207049] [INSPIRE].

    Article  ADS  Google Scholar 

  109. S. Judes and M. Visser, Conservation laws in ‘Doubly special relativity’, Phys. Rev. D 68 (2003) 045001 [gr-qc/0205067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  110. S. Liberati, S. Sonego and M. Visser, Interpreting doubly special relativity as a modified theory of measurement, Phys. Rev. D 71 (2005) 045001 [gr-qc/0410113] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  111. F. Girelli and E.R. Livine, Physics of deformed special relativity: relativity principle revisited, gr-qc/0412004 [INSPIRE].

  112. F. Girelli, T. Konopka, J. Kowalski-Glikman and E.R. Livine, The free particle in deformed special relativity, Phys. Rev. D 73 (2006) 045009 [hep-th/0512107] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  113. L. Smolin, Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity, Gen. Rel. Grav. 43 (2011) 3671 [arXiv:1004.0664] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  114. A.A. Deriglazov, Doubly special relativity in position space starting from the conformal group, Phys. Lett. B 603 (2004) 124 [hep-th/0409232] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  115. S. Hossenfelder, Multi-particle states in deformed special relativity, Phys. Rev. D 75 (2007) 105005 [hep-th/0702016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  116. R. Aloisio, A. Galante, A.F. Grillo, E. Luzio and F. Mendez, Approaching space time through velocity in doubly special relativity, Phys. Rev. D 70 (2004) 125012 [gr-qc/0410020] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  117. R. Aloisio, A. Galante, A.F. Grillo, E. Luzio and F. Mendez, A note on DSR-like approach to space-time, Phys. Lett. B 610 (2005) 101 [gr-qc/0501079] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  118. R. Schutzhold and W.G. Unruh, Large-scale nonlocality in ‘Doubly special relativity’ with an energy-dependent speed of light, JETP Lett. 78 (2003) 431 [Pisma Zh. Eksp. Teor. Fiz. 78 (2003) 899] [gr-qc/0308049] [INSPIRE].

  119. D. Grumiller, W. Kummer and D.V. Vassilevich, A note on the triviality of kappa deformations of gravity, Ukr. J. Phys. 48 (2003) 329 [hep-th/0301061] [INSPIRE].

    MathSciNet  Google Scholar 

  120. D.V. Ahluwalia, Operational indistinguishability of doubly special relativities from special relativity, gr-qc/0212128 [INSPIRE].

  121. J. Rembielinski and K.A. Smolinski, Unphysical predictions of some doubly special relativity theories, Bull. Soc. Sci. Lett. Lodz 53 (2003) 57 [hep-th/0207031] [INSPIRE].

    MathSciNet  Google Scholar 

  122. X. Calmet, S. Hossenfelder and R. Percacci, Deformed special relativity from asymptotically safe gravity, Phys. Rev. D 82 (2010) 124024 [arXiv:1008.3345] [INSPIRE].

    ADS  Google Scholar 

  123. S. Hossenfelder, Bounds on an energy-dependent and observer-independent speed of light from violations of locality, Phys. Rev. Lett. 104 (2010) 140402 [arXiv:1004.0418] [INSPIRE].

    Article  ADS  Google Scholar 

  124. S. Hossenfelder, The box-problem in deformed special relativity, arXiv:0912.0090 [INSPIRE].

  125. S. Hossenfelder, Deformed special relativity in position space, Phys. Lett. B 649 (2007) 310 [gr-qc/0612167] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  126. S. Hossenfelder, Comment on arXiv:1007.0718 by Lee Smolin, arXiv:1008.1312 [INSPIRE].

  127. S. Hossenfelder, Comments on ‘Nonlocality in deformed special relativity’, in reply to arXiv:1004.0664 by Lee Smolin and arXiv:1004.0575 by Jacob et al., arXiv:1005.0535 [INSPIRE].

  128. C. Rovelli, A note on DSR, arXiv:0808.3505 [INSPIRE].

  129. F. Hinterleitner, Canonical DSR, Phys. Rev. D 71 (2005) 025016 [gr-qc/0409087] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  130. M. Daszkiewicz, K. Imilkowska and J. Kowalski-Glikman, Velocity of particles in doubly special relativity, Phys. Lett. A 323 (2004) 345 [hep-th/0304027] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  131. S. Ghosh, A Lagrangian for DSR particle and the role of noncommutativity, Phys. Rev. D 74 (2006) 084019 [hep-th/0608206] [INSPIRE].

    ADS  Google Scholar 

  132. G. Amelino-Camelia, M. Matassa, F. Mercati and G. Rosati, Taming nonlocality in theories with Planck-scale deformed Lorentz symmetry, Phys. Rev. Lett. 106 (2011) 071301 [arXiv:1006.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  133. S. Hossenfelder, Reply to arXiv:1006.2126 by Giovanni Amelino-Camelia et al., arXiv:1006.4587 [INSPIRE].

  134. G. Amelino-Camelia, On the fate of Lorentz symmetry in relative-locality momentum spaces, Phys. Rev. D 85 (2012) 084034 [arXiv:1110.5081] [INSPIRE].

    ADS  Google Scholar 

  135. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev. D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE].

    ADS  Google Scholar 

  136. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, Relative locality: a deepening of the relativity principle, Gen. Rel. Grav. 43 (2011) 2547 [arXiv:1106.0313] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  137. S. Hossenfelder, Comment on arXiv:1104.2019, ‘Relative locality and the soccer ball problem’, by Amelino-Camelia et al., arXiv:1202.4066 [INSPIRE].

  138. J.-M. Lévy-Leblond, Une nouvelle limite non-relativiste du groupe de Poincaré, Ann. I. H. Poincaré A 3 (1965) 1.

    Google Scholar 

  139. F. Dyson, Missed opportunities, Bull. Am. Math. Soc. 78 (1972) 635 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  140. N.A. Gromov and V.V. Kuratov, Quantum kinematics, hep-th/0410086 [INSPIRE].

  141. J.M. Houlrik and G. Rousseaux, ‘Nonrelativistic’ kinematics: particles or waves?, arXiv:1005.1762 [INSPIRE].

  142. M. de Montigny and G. Rousseaux, On some applications of Galilean electrodynamics of moving bodies, Am. J. Phys. 75 (2007) 984 [physics/0606228].

    Article  ADS  Google Scholar 

  143. H. Padmanabhan and T. Padmanabhan, Non-relativistic limit of quantum field theory in inertial and non-inertial frames and the principle of equivalence, Phys. Rev. D 84 (2011) 085018 [arXiv:1110.1314] [INSPIRE].

    ADS  Google Scholar 

  144. H. Robertson, Postulate versus observation in the special theory of relativity, Rev. Mod. Phys. 21 (1949) 378 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  145. R. Mansouri and R.U. Sexl, A test theory of special relativity: I. Simultaneity and shock synchronization, Gen. Rel. Grav. 8 (1977) 497 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Visser.

Additional information

ArXiv ePrint: 1112.1466

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccetti, V., Tate, K. & Visser, M. Inertial frames without the relativity principle. J. High Energ. Phys. 2012, 119 (2012). https://doi.org/10.1007/JHEP05(2012)119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)119

Keywords

Navigation