Skip to main content
Log in

Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In deformed or doubly special relativity (DSR) the action of the lorentz group on momentum eigenstates is deformed to preserve a maximal momenta or minimal length, supposed equal to the Planck length, \({l_p = \sqrt{\hbar G}}\). The classical and quantum dynamics of a particle propagating in κ-Minkowski spacetime is discussed in order to examine an apparent paradox of locality which arises in the classical dynamics. This is due to the fact that the lorentz transformations of spacetime positions of particles depend on their energies, so whether or not a local event, defined by the coincidence of two or more particles, takes place appears to depend on the frame of reference of the observer. Here it is proposed that the paradox arises only in the classical picture, and may be resolved when the quantum dynamics is taken into account. If so, the apparent paradoxes arise because it is inconsistent to study physics in which \({\hbar =0}\) but \({l_p = \sqrt{\hbar G}\neq 0}\). This may be relevant for phenomenology such as observations by FERMI, because at leading order in l p × distance there is both a direct and a stochastic dependence of arrival time on energy, due to an additional spreading of wavepackets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelino-Camelia G.: Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11, 35 (2002) [arXiv:gr-qc/0012051]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Amelino-Camelia G.: Testable scenario for relativity with minimum-length. Phys. Lett. B 510, 255 (2001) [arXiv:hep-th/0012238]

    Article  ADS  MATH  Google Scholar 

  3. Kowalski-Glikman, J.: Observer-independent quanta of mass and length. [arXiv:hep-th/0102098]

  4. Magueijo J., Smolin L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002) [arXiv:hep-th/0112090]

    Article  ADS  Google Scholar 

  5. Magueijo J., Smolin L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67, 044017 (2003) [arXiv:gr-qc/0207085]

    Article  MathSciNet  ADS  Google Scholar 

  6. For recent reviews, see Amelino-Camelia, G.: Doubly-Special Relativity: Facts, Myths and Some Key Open Issues, Symmetry, 2(1), 230–271, http://www.mdpi.com/2073-8994/2/1/230/ (2010)

  7. Kowalski-Glikman, J.: Doubly special relativity: facts and prospects. [arXiv:gr-qc/0603022]

  8. Amelino-Camelia G., Smolin L.: Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 80, 084017 (2009) [arXiv:gr-qc/0906.3731]

    Article  ADS  Google Scholar 

  9. Schützhold R., Unruh W.G.: Large-scale non-locality in “doubly special relativity” with an energy-dependent speed of light. JETP Lett. 78, 431 (2003) [arXiv:gr-qc/0308049]

    Article  ADS  Google Scholar 

  10. Pisma Z.: Eksp. Teor. Fiz. 78, 899 (2003)

    Google Scholar 

  11. Hossenfelder S.: The Box-Problem in Deformed Special Relativity Doubly special quantum and statistical mechanics from quantum kappa Poincare algebra. Phys. Rev. D 81, 044036 (2010) [arXiv:gr-qc/0912.0090]

    Article  MathSciNet  ADS  Google Scholar 

  12. Lukierski J., Ruegg H., Nowicki A., Tolstoi V.N.: Q deformation of Poincare algebra. Phys. Lett. B 264, 331 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  13. Lukierski J., Nowicki A., Ruegg H.: New quantum Poincare algebra and k deformed field theory. Phys. Lett. B 293, 344 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  14. Majid S., Ruegg H.: Bicrossproduct structure of kappa poincare group and noncommutative geometry. Phys. Lett. B 334, 348 (1994) [arXiv:hep-th/9405107]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Lukierski J., Ruegg H., Zakrzewski W.J.: Classical quantum mechanics of free kappa relativistic systems. Ann. Phys. 243, 90 (1995) [arXiv:hep-th/9312153]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Girelli F., Konopka T., Kowalski-Glikman J., Livine E.R.: The free particle in deformed special relativity. Phys. Rev. D 73, 045009 (2006) [arXiv:hep-th/0512107]

    Article  MathSciNet  ADS  Google Scholar 

  17. Arzano, M., Kowalski-Glikman, J.: Deformations of spacetime symmetries, unpublished book manuscript

  18. Daszkiewicz M., Imilkowska K., Kowalski-Glikman J.: Velocity of Particles in doubly special relativity. Phys. Lett. A 323, 345 (2004) [arXiv:hep-th/0304027]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Kowalski-Glikman J.: Distance measurement and kappa deformed propagation of light and heavy probes. Phys. Lett. A 299, 454 (2002) [arXiv:hep-th/0111110]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Amelino-Camelia G., Lukierski J., Nowicki A.: Kappa deformed covariant phase space and quantum gravity uncertainty relations. Int. J. Mod. Phys. A 14, 4575 (1999) [arXiv:gr-qc/9903066]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Amelino-Camelia G., Lukierski J., Nowicki A.: Kappa deformed covariant phase space and quantum gravity uncertainty relations. Phys. Atom. Nucl. 61, 1811 (1998) [arXiv:hep-th/9706031]

    MathSciNet  ADS  Google Scholar 

  22. Amelino-Camelia G., Lukierski J., Nowicki A.: Kappa deformed covariant phase space and quantum gravity uncertainty relations. Yad. Fiz. 61, 1925 (1998)

    MathSciNet  Google Scholar 

  23. Rychkov V.S.: Observers and Measurements in Noncommutative Spacetimes. JCAP 0307, 006 (2003) [arXiv:hep-th/0305187]

    MathSciNet  ADS  Google Scholar 

  24. Tezuka, K.-I.: Uncertainty of Velocity in kappa-Minkowski Spacetime. [arXiv:hep-th/0302126]

  25. Gomis J., Mehen T.: Space-Time Noncommutative Field Theories And Uni- tarity. Nucl. Phys. B 591, 265 (2000) [arXiv:hep-th/0005129]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Amelino-Camelia, G., Arzano, M.: Phys. Rev. D 65, 084044 (2002). [arXiv:hep-th/0105120]

  27. Arzano, M., Marciano, A.: [arXiv:hep-th/0707.1329]

  28. Arzano M.: Quantum fields, non-locality and quantum group symmetries. Phys. Rev. D 77, 025013 (2008) [arXiv:hep-th/0710.1083]

    Article  MathSciNet  ADS  Google Scholar 

  29. Arzano M., Benedetti D.: Rainbow statistics. Int. J. Mod. Phys. A 24, 4623 (2009) [arXiv:hep-th/0809.0889]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Jacob, U., Mercati, F., Amelino-Camelia, G., Piran, T.: Modifications to Lorentz invariant dispersion in relatively boosted frames (preprint), April (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Smolin.

Additional information

This paper is dedicated to Josh Goldberg who has been a wonderful colleague and mentor to me as well as a role model for his principled and ever enthusiastic approach to science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolin, L. Classical paradoxes of locality and their possible quantum resolutions in deformed special relativity. Gen Relativ Gravit 43, 3671–3691 (2011). https://doi.org/10.1007/s10714-011-1235-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1235-1

Keywords

Navigation