Skip to main content

Interpreting the electron EDM constraint

A preprint version of the article is available at arXiv.

Abstract

The ACME collaboration has recently announced a new constraint on the electron EDM, |de| < 1.1 × 10−29e cm, from measurements of the ThO molecule. This is a powerful constraint on CP-violating new physics: even new physics generating the EDM at two loops is constrained at the multi-TeV scale. We interpret the bound in the context of different scenarios for new physics: a general order-of-magnitude analysis for both the electron EDM and the CP-odd electron-nucleon coupling; 1-loop SUSY, probing sleptons above 10 TeV; 2-loop SUSY, probing multi-TeV charginos or stops; and finally, new physics that generates the EDM via the charm quark or top quark Yukawa couplings. In the last scenario, new physics generates a “QULE operator” \( \left({q}_f{\overline{\sigma}}^{\mu \nu }{\overline{u}}_f\right)\kern0.5em \cdotp \kern0.5em \left(\ell {\overline{\sigma}}_{\mu \nu}\overline{e}\right) \), which in turn generates the EDM through RG evolution. If the QULE operator is generated at tree level, this corresponds to a previously studied leptoquark model. For the first time, we also classify scenarios in which the QULE operator is generated at one loop through a box diagram, which include (among others) SUSY and leptoquark models. The electron EDM bound is the leading constraint on a wide variety of theories of CP-violating new physics interacting with the Higgs boson or the top quark. We argue that any future nonzero measurement of an electron EDM will provide a strong motivation for constructing new colliders at the highest feasible energies.

References

  1. [1]

    ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355.

  2. [2]

    ACME collaboration, Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].

  3. [3]

    W.B. Cairncross et al., Precision Measurement of the Electrons Electric Dipole Moment Using Trapped Molecular Ions, Phys. Rev. Lett. 119 (2017) 153001 [arXiv:1704.07928] [INSPIRE].

  4. [4]

    M. Pospelov and A. Ritz, CKM benchmarks for electron electric dipole moment experiments, Phys. Rev. D 89 (2014) 056006 [arXiv:1311.5537] [INSPIRE].

  5. [5]

    F. Hoogeveen, The Standard Model Prediction for the Electric Dipole Moment of the Electron, Nucl. Phys. B 341 (1990) 322 [INSPIRE].

  6. [6]

    M.E. Pospelov and I.B. Khriplovich, Electric dipole moment of the W boson and the electron in the Kobayashi-Maskawa model, Sov. J. Nucl. Phys. 53 (1991) 638 [Yad. Fiz. 53 (1991) 1030] [INSPIRE].

  7. [7]

    K. Choi and J.-y. Hong, Electron electric dipole moment and Theta (QCD), Phys. Lett. B 259 (1991) 340 [INSPIRE].

  8. [8]

    D. Ghosh and R. Sato, Lepton Electric Dipole Moment and Strong CP-violation, Phys. Lett. B 777 (2018) 335 [arXiv:1709.05866] [INSPIRE].

  9. [9]

    D. Ng and J.N. Ng, A Note on Majorana neutrinos, leptonic CKM and electron electric dipole moment, Mod. Phys. Lett. A 11 (1996) 211 [hep-ph/9510306] [INSPIRE].

  10. [10]

    J.P. Archambault, A. Czarnecki and M. Pospelov, Electric dipole moments of leptons in the presence of Majorana neutrinos, Phys. Rev. D 70 (2004) 073006 [hep-ph/0406089] [INSPIRE].

  11. [11]

    M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

  12. [12]

    J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric Dipole Moments of Nucleons, Nuclei and Atoms: The Standard Model and Beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    M.S. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko and C.W. Clark, Search for New Physics with Atoms and Molecules, Rev. Mod. Phys. 90 (2018) 025008 [arXiv:1710.01833] [INSPIRE].

  14. [14]

    T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei and particles, Rev. Mod. Phys. 91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].

  15. [15]

    A. Pais and J.R. Primack, Cp violation and electric dipole moments in gauge theories of weak interactions, Phys. Rev. D 8 (1973) 3063 [INSPIRE].

  16. [16]

    J.F. Donoghue, T Violation in SU(2) × U(1) Gauge Theories of Leptons, Phys. Rev. D 18 (1978) 1632 [INSPIRE].

  17. [17]

    J.R. Ellis, S. Ferrara and D.V. Nanopoulos, CP Violation and Supersymmetry, Phys. Lett. B 114 (1982) 231.

  18. [18]

    S.P. Chia and S. Nandi, Neutron Electric Dipole Moment in Supersymmetric Theories, Phys. Lett. B 117 (1982) 45.

  19. [19]

    J. Polchinski and M.B. Wise, The Electric Dipole Moment of the Neutron in Low-Energy Supergravity, Phys. Lett. B 125 (1982) 393.

  20. [20]

    F. del Aguila, M.B. Gavela, J.A. Grifols and A. Mendez, Specifically Supersymmetric Contribution to Electric Dipole Moments, Phys. Lett. B 126 (1983) 71 [Erratum ibid. B 129 (1983) 473].

  21. [21]

    M.B. Gavela and H. Georgi, CP Violation in the Lepton Sector, Phys. Lett. B 119 (1982) 141.

  22. [22]

    S. Weinberg, Larger Higgs Exchange Terms in the Neutron Electric Dipole Moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

  24. [24]

    R.G. Leigh, S. Paban and R.M. Xu, Electric dipole moment of electron, Nucl. Phys. B 352 (1991) 45 [INSPIRE].

  25. [25]

    D. Chang, W.-Y. Keung and A. Pilaftsis, New two loop contribution to electric dipole moment in supersymmetric theories, Phys. Rev. Lett. 82 (1999) 900 [Erratum ibid. 83 (1999) 3972] [hep-ph/9811202] [INSPIRE].

  26. [26]

    Y. Li, S. Profumo and M. Ramsey-Musolf, Higgs-Higgsino-Gaugino Induced Two Loop Electric Dipole Moments, Phys. Rev. D 78 (2008) 075009 [arXiv:0806.2693] [INSPIRE].

  27. [27]

    N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

  28. [28]

    G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B 634 (2006) 307 [hep-ph/0510197] [INSPIRE].

  29. [29]

    D. Chang, W.-Y. Keung, and T.C. Yuan, Two loop bosonic contribution to the electron electric dipole moment, Phys. Rev. D 43 (1991) R14.

  30. [30]

    M. Jung and A. Pich, Electric Dipole Moments in Two-Higgs-Doublet Models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [Erratum ibid. 1604 (2016) 161] [arXiv:1311.4704] [INSPIRE].

  32. [32]

    K. Blum, C. Delaunay, M. Losada, Y. Nir and S. Tulin, CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments, JHEP 05 (2010) 101 [arXiv:1003.2447] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  33. [33]

    W. Altmannshofer, M. Carena, S. Gori and A. de la Puente, Signals of CP-violation Beyond the MSSM in Higgs and Flavor Physics, Phys. Rev. D 84 (2011) 095027 [arXiv:1107.3814] [INSPIRE].

  34. [34]

    G. Panico, M. Riembau and T. Vantalon, Probing light top partners with CP-violation, JHEP 06 (2018) 056 [arXiv:1712.06337] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    O. Lebedev and M. Pospelov, Electric dipole moments in the limit of heavy superpartners, Phys. Rev. Lett. 89 (2002) 101801 [hep-ph/0204359] [INSPIRE].

  36. [36]

    D.A. Demir, O. Lebedev, K.A. Olive, M. Pospelov and A. Ritz, Electric dipole moments in the MSSM at large tan beta, Nucl. Phys. B 680 (2004) 339 [hep-ph/0311314] [INSPIRE].

  37. [37]

    M. Jung, A robust limit for the electric dipole moment of the electron, JHEP 05 (2013) 168 [arXiv:1301.1681] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    T. Chupp and M. Ramsey-Musolf, Electric Dipole Moments: A Global Analysis, Phys. Rev. C 91 (2015) 035502 [arXiv:1407.1064] [INSPIRE].

  39. [39]

    Y. Nakai and M. Reece, Electric Dipole Moments in Natural Supersymmetry, JHEP 08 (2017) 031 [arXiv:1612.08090] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  41. [41]

    J.M. Arnold, B. Fornal and M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88 (2013) 035009 [arXiv:1304.6119] [INSPIRE].

  42. [42]

    K. Fuyuto, M. Ramsey-Musolf and T. Shen, Electric Dipole Moments from CP-Violating Scalar Leptoquark Interactions, Phys. Lett. B 788 (2019) 52 [arXiv:1804.01137] [INSPIRE].

  43. [43]

    W. Dekens, J. de Vries, M. Jung and K.K. Vos, The phenomenology of electric dipole moments in models of scalar leptoquarks, JHEP 01 (2019) 069 [arXiv:1809.09114] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

  45. [45]

    D. Atwood, C.P. Burgess, C. Hamazaou, B. Irwin and J.A. Robinson, One loop P and T odd W ± electromagnetic moments, Phys. Rev. D 42 (1990) 3770 [INSPIRE].

  46. [46]

    N. Yamanaka, Two-loop level rainbowlike supersymmetric contribution to the fermion electric dipole moment, Phys. Rev. D 87 (2013) 011701 [arXiv:1211.1808] [INSPIRE].

  47. [47]

    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    V. Dzuba, V. Flambaum and C. Harabati, Relations between matrix elements of different weak interactions and interpretation of the parity-nonconserving and electron electric-dipole-moment measurements in atoms and molecules, Phys. Rev. A 84 (2011) 052108.

  49. [49]

    J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric Dipole Moments in the MSSM Reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    P. Junnarkar and A. Walker-Loud, Scalar strange content of the nucleon from lattice QCD, Phys. Rev. D 87 (2013) 114510 [arXiv:1301.1114] [INSPIRE].

  51. [51]

    T. Ibrahim and P. Nath, CP Violation From Standard Model to Strings, Rev. Mod. Phys. 80 (2008) 577 [arXiv:0705.2008] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    D. McKeen, M. Pospelov and A. Ritz, Electric dipole moment signatures of PeV-scale superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].

  53. [53]

    W. Altmannshofer, R. Harnik and J. Zupan, Low Energy Probes of PeV Scale Sfermions, JHEP 11 (2013) 202 [arXiv:1308.3653] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

  55. [55]

    R. Kitano, H. Ooguri and Y. Ookouchi, Supersymmetry Breaking and Gauge Mediation, Ann. Rev. Nucl. Part. Sci. 60 (2010) 491 [arXiv:1001.4535].

    ADS  Article  Google Scholar 

  56. [56]

    M. Claudson, L.J. Hall and I. Hinchliffe, Low-Energy Supergravity: False Vacua and Vacuous Predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].

  57. [57]

    J.A. Casas, A. Lleyda and C. Muñoz, Problems for supersymmetry breaking by the dilaton in strings from charge and color breaking, Phys. Lett. B 380 (1996) 59 [hep-ph/9601357] [INSPIRE].

  58. [58]

    D. Chowdhury, R.M. Godbole, K.A. Mohan and S.K. Vempati, Charge and Color Breaking Constraints in MSSM after the Higgs Discovery at LHC, JHEP 02 (2014) 110 [Erratum ibid. 1803 (2018) 149] [arXiv:1310.1932] [INSPIRE].

  59. [59]

    N. Blinov and D.E. Morrissey, Vacuum Stability and the MSSM Higgs Mass, JHEP 03 (2014) 106 [arXiv:1310.4174] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

  61. [61]

    G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

  62. [62]

    J. Pardo Vega and G. Villadoro, SusyHD: Higgs mass Determination in Supersymmetry, JHEP 07 (2015) 159 [arXiv:1504.05200] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    I. Kozyryev and N.R. Hutzler, Precision Measurement of Time-Reversal Symmetry Violation with Laser-Cooled Polyatomic Molecules, Phys. Rev. Lett. 119 (2017) 133002 [arXiv:1705.11020] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    P.J. Fox, G.D. Kribs and A. Martin, Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter, Phys. Rev. D 90 (2014) 075006 [arXiv:1405.3692] [INSPIRE].

  65. [65]

    N. Nagata and S. Shirai, Higgsino Dark Matter in High-Scale Supersymmetry, JHEP 01 (2015) 029 [arXiv:1410.4549] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    R. Krall and M. Reece, Last Electroweak WIMP Standing: Pseudo-Dirac Higgsino Status and Compact Stars as Future Probes, Chin. Phys. C 42 (2018) 043105 [arXiv:1705.04843] [INSPIRE].

  67. [67]

    R. Barbieri, M. Frigeni and G.F. Giudice, Dark Matter Neutralinos in Supergravity Theories, Nucl. Phys. B 313 (1989) 725 [INSPIRE].

  68. [68]

    PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].

  69. [69]

    B.J. Mount et al., LUX-ZEPLIN (LZ) Technical Design Report, arXiv:1703.09144 [INSPIRE].

  70. [70]

    A. Basirnia, S. Macaluso and D. Shih, Dark Matter and the Higgs in Natural SUSY, JHEP 03 (2017) 073 [arXiv:1605.08442] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  71. [71]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

  72. [72]

    R. Mahbubani and L. Senatore, The Minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].

  73. [73]

    T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-Doublet Dark Matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].

  74. [74]

    A. Dedes and D. Karamitros, Doublet-Triplet Fermionic Dark Matter, Phys. Rev. D 89 (2014) 115002 [arXiv:1403.7744] [INSPIRE].

  75. [75]

    J. Fan and M. Reece, Probing Charged Matter Through Higgs Diphoton Decay, Gamma Ray Lines and EDMs, JHEP 06 (2013) 004 [arXiv:1301.2597] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    A. Joglekar, P. Schwaller and C.E.M. Wagner, Dark Matter and Enhanced Higgs to Di-photon Rate from Vector-like Leptons, JHEP 12 (2012) 064 [arXiv:1207.4235] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2 : 1 for Naturalness at the LHC?, JHEP 01 (2013) 149 [arXiv:1207.4482] [INSPIRE].

  78. [78]

    K. Blum, R.T. D’Agnolo and J. Fan, Vacuum stability bounds on Higgs coupling deviations in the absence of new bosons, JHEP 03 (2015) 166 [arXiv:1502.01045] [INSPIRE].

    Article  Google Scholar 

  79. [79]

    A. Joglekar, P. Schwaller and C.E.M. Wagner, A Supersymmetric Theory of Vector-like Leptons, JHEP 07 (2013) 046 [arXiv:1303.2969] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    D. Egana-Ugrinovic, The minimal fermionic model of electroweak baryogenesis, JHEP 12 (2017) 064 [arXiv:1707.02306] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  81. [81]

    M. Carena, A. Megevand, M. Quirós and C.E.M. Wagner, Electroweak baryogenesis and new TeV fermions, Nucl. Phys. B 716 (2005) 319 [hep-ph/0410352] [INSPIRE].

  82. [82]

    A. Katz, M. Reece and A. Sajjad, Naturalness, bsγ and SUSY heavy Higgses, JHEP 10 (2014) 102 [arXiv:1406.1172] [INSPIRE].

  83. [83]

    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  84. [84]

    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  86. [86]

    I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  87. [87]

    M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].

  88. [88]

    M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the \( {R}_{D^{\left(\ast \right)}} \) , R K and (g − 2)g Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].

  89. [89]

    A.C. Vutha, M. Horbatsch and E.A. Hessels, Oriented polar molecules in a solid inert-gas matrix: a proposed method for measuring the electric dipole moment of the electron, arXiv:1710.08785 [INSPIRE].

  90. [90]

    J. Lim et al., Laser Cooled YbF Molecules for Measuring the Electrons Electric Dipole Moment, Phys. Rev. Lett. 120 (2018) 123201 [arXiv:1712.02868] [INSPIRE].

  91. [91]

    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    M. Dine, R.G. Leigh and D.A. MacIntire, Of CP and other gauge symmetries in string theory, Phys. Rev. Lett. 69 (1992) 2030 [hep-th/9205011] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    K.-w. Choi, D.B. Kaplan and A.E. Nelson, Is CP a gauge symmetry?, Nucl. Phys. B 391 (1993) 515 [hep-ph/9205202] [INSPIRE].

  94. [94]

    Y. Nir and R. Rattazzi, Solving the supersymmetric CP problem with Abelian horizontal symmetries, Phys. Lett. B 382 (1996) 363 [hep-ph/9603233] [INSPIRE].

  95. [95]

    J.P. Conlon, Mirror Mediation, JHEP 03 (2008) 025 [arXiv:0710.0873] [INSPIRE].

  96. [96]

    S.A.R. Ellis and G.L. Kane, Theoretical Prediction and Impact of Fundamental Electric Dipole Moments, JHEP 01 (2016) 077 [arXiv:1405.7719] [INSPIRE].

    ADS  Article  Google Scholar 

  97. [97]

    F. Vissani, Do experiments suggest a hierarchy problem?, Phys. Rev. D 57 (1998) 7027 [hep-ph/9709409] [INSPIRE].

  98. [98]

    M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].

    ADS  Google Scholar 

  99. [99]

    A. de Gouvêa, D. Hernandez and T.M.P. Tait, Criteria for Natural Hierarchies, Phys. Rev. D 89 (2014) 115005 [arXiv:1402.2658] [INSPIRE].

  100. [100]

    G. Panico, A. Pomarol and M. Riembau, EFT approach to the electron Electric Dipole Moment at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413] [INSPIRE].

    ADS  Article  Google Scholar 

  101. [101]

    J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev. D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aditya Parikh.

Additional information

ArXiv ePrint: 1810.07736

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cesarotti, C., Lu, Q., Nakai, Y. et al. Interpreting the electron EDM constraint. J. High Energ. Phys. 2019, 59 (2019). https://doi.org/10.1007/JHEP05(2019)059

Download citation

Keywords

  • Beyond Standard Model
  • Supersymmetric Standard Model