Skip to main content

Conformal perturbation theory and higher spin entanglement entropy on the torus

A preprint version of the article is available at arXiv.

Abstract

We study the free fermion theory in 1+1 dimensions deformed by chemical potentials for holomorphic, conserved currents at finite temperature and on a spatial circle. For a spin-three chemical potential μ, the deformation is related at high temperatures to a higher spin black hole in hs[0] theory on AdS3 spacetime. We calculate the order μ2 corrections to the single interval Rényi and entanglement entropies on the torus using the bosonized formulation. A consistent result, satisfying all checks, emerges upon carefully accounting for both perturbative and winding mode contributions in the bosonized language. The order μ2 corrections involve integrals that are finite but potentially sensitive to contact term singularities. We propose and apply a prescription for defining such integrals which matches the Hamiltonian picture and passes several non-trivial checks for both thermal corrections and the Rényi entropies at this order. The thermal corrections are given by a weight six quasi-modular form, whilst the Rényi entropies are controlled by quasi-elliptic functions of the interval length with modular weight six. We also point out the well known connection between the perturbative expansion of the partition function in powers of the spin-three chemical potential and the Gross-Taylor genus expansion of large-N Yang-Mills theory on the torus. We note the absence of winding mode contributions in this connection, which suggests qualitatively different entanglement entropies for the two systems.

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002 [hep-th/0405152] [INSPIRE].

  8. P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010 [cond-mat/0503393] [INSPIRE].

  9. P. Calabrese and J.L. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  10. J.L. Cardy and P. Calabrese, Unusual Corrections to Scaling in Entanglement Entropy, J. Stat. Mech. (2010) P04023 [arXiv:1002.4353] [INSPIRE].

  11. M.R. Douglas, Conformal field theory techniques in large-N Yang-Mills theory, hep-th/9311130 [INSPIRE].

  12. R. Dijkgraaf, Chiral deformations of conformal field theories, Nucl. Phys. B 493 (1997) 588 [hep-th/9609022] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. M.R. Gaberdiel, T. Hartman and K. Jin, Higher Spin Black Holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: A review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. M.R. Gaberdiel, K. Jin and E. Perlmutter, Probing higher spin black holes from CFT, JHEP 10 (2013) 045 [arXiv:1307.2221] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  24. M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].

    ADS  Article  Google Scholar 

  26. S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev. D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].

    ADS  Google Scholar 

  27. J. de Boer and J.I. Jottar, Entanglement Entropy and Higher Spin Holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].

    Article  Google Scholar 

  28. M. Ammon, A. Castro and N. Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. S. Datta, Relative entropy in higher spin holography, Phys. Rev. D 90 (2014) 126010 [arXiv:1406.0520] [INSPIRE].

    ADS  Google Scholar 

  30. A. Castro and E. Llabrés, Unravelling Holographic Entanglement Entropy in Higher Spin Theories, JHEP 03 (2015) 124 [arXiv:1410.2870] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  31. J. Long, Higher Spin Entanglement Entropy, JHEP 12 (2014) 055 [arXiv:1408.1298] [INSPIRE].

    ADS  Article  Google Scholar 

  32. B. Chen, J. Long and J.-j. Zhang, Holographic Rényi entropy for CFT with W symmetry, JHEP 04 (2014) 041 [arXiv:1312.5510] [INSPIRE].

    ADS  Article  Google Scholar 

  33. C.N. Pope, L.J. Romans and X. Shen, The Complete Structure of W(Infinity), Phys. Lett. B 236 (1990) 173 [INSPIRE].

    ADS  Article  Google Scholar 

  34. E. Bergshoeff, C.N. Pope, L.J. Romans, E. Sezgin and X. Shen, The Super W Algebra, Phys. Lett. B 245 (1990) 447 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  35. C.N. Pope, Lectures on W algebras and W gravity, hep-th/9112076 [INSPIRE].

  36. I. Bakas and E. Kiritsis, Bosonic Realization of a Universal W Algebra and Z(infinity) Parafermions, Nucl. Phys. B 343 (1990) 185 [Erratum ibid. B 350 (1991) 512] [INSPIRE].

  37. J. de Boer and J.I. Jottar, Boundary Conditions and Partition Functions in Higher Spin AdS 3 /CFT 2, arXiv:1407.3844 [INSPIRE].

  38. M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  39. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Semi-classical unitarity in 3-dimensional higher-spin gravity for non-principal embeddings, Class. Quant. Grav. 30 (2013) 104004 [arXiv:1211.4454] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. M. Ferlaino, T. Hollowood and S.P. Kumar, Asymptotic symmetries and thermodynamics of higher spin black holes in AdS3, Phys. Rev. D 88 (2013) 066010 [arXiv:1305.2011] [INSPIRE].

    ADS  Google Scholar 

  44. G. Compére, J.I. Jottar and W. Song, Observables and Microscopic Entropy of Higher Spin Black Holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].

    ADS  Article  Google Scholar 

  45. G. Compére and W. Song, \( \mathcal{W} \) symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: Black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  47. A. Perez, D. Tempo and R. Troncoso, Higher spin black hole entropy in three dimensions, JHEP 04 (2013) 143 [arXiv:1301.0847] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].

    ADS  Article  Google Scholar 

  49. J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].

    Article  MATH  Google Scholar 

  50. T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  51. T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  52. S. Datta and J.R. David, Rényi entropies of free bosons on the torus and holography, JHEP 04 (2014) 081 [arXiv:1311.1218] [INSPIRE].

    ADS  Article  Google Scholar 

  53. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York, U.S.A. (1997), pg. 890.

    Book  MATH  Google Scholar 

  54. N.J. Iles and G.M.T. Watts, Modular properties of characters of the W3 algebra, arXiv:1411.4039 [INSPIRE].

  55. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Cambridge University Press, Cambridge, U.K. (1989).

    Book  MATH  Google Scholar 

  56. M.R. Gaberdiel, K. Jin and W. Li, Perturbations of W CFTs, JHEP 10 (2013) 162 [arXiv:1307.4087] [INSPIRE].

    ADS  Article  Google Scholar 

  57. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, U.K. (1927).

    MATH  Google Scholar 

  58. L. Griguolo, D. Seminara and R.J. Szabo, Two-dimensional Yang-Mills theory and moduli spaces of holomorphic differentials, Phys. Lett. B 600 (2004) 275 [hep-th/0408055] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. D.J. Gross, Two-dimensional QCD as a string theory, Nucl. Phys. B 400 (1993) 161 [hep-th/9212149] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  62. R.E. Rudd, The string partition function for QCD on the torus, hep-th/9407176 [INSPIRE].

  63. R. Dijkgraaf, Mirror symmetry and elliptic curves, in The Moduli Space of Curves, Birkhäuser, Prog. Math. 129 (1995) 149.

    MathSciNet  MATH  Google Scholar 

  64. M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in The Moduli Space of Curves, Birkhäuser, Prog. Math. 129 (1995) 165.

    MATH  Google Scholar 

  65. A. Velytsky, Entanglement entropy in d+1 SU(N) gauge theory, Phys. Rev. D 77 (2008) 085021 [arXiv:0801.4111] [INSPIRE].

    ADS  Google Scholar 

  66. A. Gromov and R.A. Santos, Entanglement Entropy in 2D Non-abelian Pure Gauge Theory, Phys. Lett. B 737 (2014) 60 [arXiv:1403.5035] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS 2 /CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].

    ADS  Google Scholar 

  68. C.P. Herzog and T. Nishioka, Entanglement Entropy of a Massive Fermion on a Torus, JHEP 03 (2013) 077 [arXiv:1301.0336] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. J.J. Atick, L.J. Dixon, P.A. Griffin and D. Nemeschansky, Multiloop Twist Field Correlation Functions for Z(N) Orbifolds, Nucl. Phys. B 298 (1988) 1 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  70. N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer, New York, U.S.A. (1984).

    Book  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prem Kumar.

Additional information

ArXiv ePrint: 1412.3946

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Datta, S., David, J.R. & Kumar, S.P. Conformal perturbation theory and higher spin entanglement entropy on the torus. J. High Energ. Phys. 2015, 41 (2015). https://doi.org/10.1007/JHEP04(2015)041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2015)041

Keywords

  • Field Theories in Lower Dimensions
  • AdS-CFT Correspondence
  • Conformal and W Symmetry