Skip to main content
Log in

Higher spin black hole entropy in three dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

A generic formula for the entropy of three-dimensional black holes endowed with a spin-3 field is found, which depends on the horizon area A and its spin-3 analogue \( \varphi_{+}^{{{1 \left/ {3} \right.}}} \), given by the reparametrization invariant integral of the induced spin-3 field at the spacelike section of the horizon. From this result it can be shown that the absolute value of \( {\varphi_{+}} \) has to be bounded from above according to \( {{\left| {{\varphi_{+}}} \right|}^{{{1 \left/ {3} \right.}}}}\leq {A \left/ {{\sqrt{3}}} \right.} \). The entropy formula is constructed by requiring the first law of thermodynamics to be fulfilled in terms of the global charges obtained through the canonical formalism. For the static case, in the weak spin-3 field limit, our expression for the entropy reduces to the result found by Campoleoni, Fredenhagen, Pfenninger and Theisen, which has been recently obtained through a different approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    Article  ADS  Google Scholar 

  2. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d , Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  6. X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987 [arXiv:1007.0435] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Sagnotti, Notes on strings and higher spins, arXiv:1112.4285 [INSPIRE].

  8. M.R. Gaberdiel and R. Gopakumar, Minimal model holography, arXiv:1207.6697 [INSPIRE].

  9. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, arXiv:1208.5182 [INSPIRE].

  10. C. Aragone and S. Deser, Hypersymmetry in D = 3 of coupled gravity-massless spin-5/2 system, Class. Quant. Grav. 1 (1984) L9 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. M.P. Blencowe, A consistent interacting massless higher-spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Natsuume, T. Okamura and M. Sato, Three-dimensional gravity with conformal scalar and asymptotic Virasoro algebra, Phys. Rev. D 61 (2000) 104005 [hep-th/9910105] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2+1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [INSPIRE].

    ADS  Google Scholar 

  19. A. Ashtekar, A. Corichi and D. Sudarsky, Nonminimally coupled scalar fields and isolated horizons, Class. Quant. Grav. 20 (2003) 3413 [gr-qc/0305044] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. C. Martínez, J.P. Staforelli and R. Troncoso, Topological black holes dressed with a conformally coupled scalar field and electric charge, Phys. Rev. D 74 (2006) 044028 [hep-th/0512022] [INSPIRE].

    ADS  Google Scholar 

  21. A. Pérez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: black holes, global charges and thermodynamics, arXiv:1207.2844 [INSPIRE].

  22. T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A.P. Balachandran, G. Bimonte, K.S. Gupta and A. Stern, Conformal edge currents in Chern-Simons theories, Int. J. Mod. Phys. A 7 (1992) 4655 [hep-th/9110072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Bañados, Global charges in Chern-Simons field theory and the (2+1) black hole, Phys. Rev. D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].

    Google Scholar 

  25. S. Carlip, Conformal field theory, (2+1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. M. Bañados, R. Canto and S. Theisen, The action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. B. Chen, J. Long and Y.-N. Wang, Phase structure of higher spin black hole, JHEP 03 (2013) 017 [arXiv:1212.6593] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, arXiv:1208.1851 [INSPIRE].

  31. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. H.-S. Tan, Aspects of three-dimensional spin-4 gravity, JHEP 02 (2012) 035 [arXiv:1111.2834] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. B. Chen, J. Long and Y.-n. Wang, Black holes in truncated higher spin AdS 3 gravity, JHEP 12 (2012) 052 [arXiv:1209.6185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  39. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. M.R. Gaberdiel and P. Suchanek, Limits of minimal models and continuous orbifolds, JHEP 03 (2012) 104 [arXiv:1112.1708] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. P. Kraus and E. Perlmutter, Probing higher spin black holes, JHEP 02 (2013) 096 [arXiv:1209.4937] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Banerjee et al., Smoothed transitions in higher spin AdS gravity, arXiv:1209.5396 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Pérez.

Additional information

ArXiv ePrint: 1301.0847

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, A., Tempo, D. & Troncoso, R. Higher spin black hole entropy in three dimensions. J. High Energ. Phys. 2013, 143 (2013). https://doi.org/10.1007/JHEP04(2013)143

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)143

Keywords

Navigation