ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.
B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
ADS
Google Scholar
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.
B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ADS
Google Scholar
C.A. Nelson, Correlation between decay planes in Higgs boson decays into W pair (into Z pair), Phys. Rev.
D 37 (1988) 1220 [INSPIRE].
ADS
Google Scholar
A. Soni and R.M. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev.
D 48 (1993) 5259 [hep-ph/9301225] [INSPIRE].
ADS
Google Scholar
D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W
+
W
−
, or
\( t\overline{t} \), Phys. Rev.
D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].
ADS
Google Scholar
V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e
+
e
−
colliders, Phys. Rev.
D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].
ADS
Google Scholar
T. Arens and L.M. Sehgal, Energy spectra and energy correlations in the decay H →ZZ →μ
+
μ
−
μ
+
μ
−, Z. Phys.
C 66 (1995) 89 [hep-ph/9409396][INSPIRE].
ADS
Google Scholar
S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett.
B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
ADS
Article
Google Scholar
C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in H → ZZ → ℓ
+
1
ℓ
−
1
ℓ
+
2
ℓ
−
2
at the LHC, Eur. Phys. J.
C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].
ADS
Article
Google Scholar
R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP
12 (2007) 031 [arXiv:0708.0458] [INSPIRE].
ADS
Article
Google Scholar
V.A. Kovalchuk, Model-independent analysis of CP-violation effects in decays of the Higgs boson into a pair of the W and Z bosons, J. Exp. Theor. Phys.
107 (2008) 774 [INSPIRE].
ADS
Article
Google Scholar
Q.-H. Cao, C.B. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev.
D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].
ADS
Google Scholar
Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev.
D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].
ADS
Google Scholar
A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev.
D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].
ADS
Google Scholar
J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP
11 (2011) 027 [arXiv:1108.2274] [INSPIRE].
ADS
Article
Google Scholar
B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev.
D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].
ADS
Google Scholar
S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev.
D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].
ADS
Google Scholar
D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev.
D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].
ADS
Google Scholar
R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring the ‘Higgs’ boson spin and CP properties, arXiv:1208.4311 [INSPIRE].
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun.
184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
ADS
Article
MATH
Google Scholar
P. Avery et al., Precision studies of the Higgs boson decay channel H → ZZ → 4ℓ with MEKD, Phys. Rev.
D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].
ADS
Google Scholar
J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].
J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP
11 (2012) 043 [arXiv:1204.4424] [INSPIRE].
ADS
Article
Google Scholar
T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125-126 GeV, arXiv:1301.5404 [INSPIRE].
Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel h → ZZ
∗ → 4l, arXiv:1309.4171 [INSPIRE].
J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett.
111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].
ADS
Article
Google Scholar
I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev.
D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].
ADS
Google Scholar
M. Chen et al., The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC, Phys. Rev.
D 89 (2014) 034002 [arXiv:1310.1397] [INSPIRE].
ADS
Google Scholar
G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in h → Zℓ
+
ℓ
−, arXiv:1310.2574 [INSPIRE].
Y. Chen et al., 8D likelihood effective Higgs couplings extraction framework in the golden channel, arXiv:1401.2077 [INSPIRE].
Y. Chen et al., Technical note for extracting Higgs effective couplings framework, technical note, in preparation (2013).
P. Artoisenet et al., A framework for Higgs characterisation, JHEP
11 (2013) 043 [arXiv:1306.6464] [INSPIRE].
ADS
Article
Google Scholar
Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs signal and background in the 2e2μ golden channel, JHEP
01 (2013) 182 [arXiv:1211.1959] [INSPIRE].
ADS
Article
Google Scholar
N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun.
180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].
ADS
Article
Google Scholar
J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP
09 (2007) 028 [arXiv:0706.2334] [INSPIRE].
ADS
Article
Google Scholar
A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP
11 (2013) 111 [arXiv:1303.1812] [INSPIRE].
ADS
Article
Google Scholar
M. Jamin and M.E. Lautenbacher, TRACER: version 1.1: a Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun.
74 (1993) 265 [INSPIRE].
ADS
Article
Google Scholar
S. Wofram, Mathematica: technical computing software, (2012).
D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun.
180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].
ADS
Article
Google Scholar
Y. Chen and R. Vega-Morales, Scrutinizing the golden channel website, http://yichen.me/project/GoldenChannel/, (2013).
Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys.
G 37 (2010) 075021 [INSPIRE].
ADS
Article
Google Scholar
C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys.
C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].
ADS
Google Scholar
T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to pp → ZZ → \( \ell \overline{\ell}{\ell^{\prime }}{{\overline{\ell}}^{\prime }} \), arXiv:0807.0024 [INSPIRE].
N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP
08 (2012) 116 [arXiv:1206.4803] [INSPIRE].
ADS
Article
Google Scholar
I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev.
D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].
ADS
Google Scholar