Skip to main content
Log in

Histogram comparison tools for the search of new physics at LHC. Application to the CMSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a rigorous and effective way to compare experimental and theoretical histograms, incorporating the different sources of statistical and systematic uncertainties. This is a useful tool to extract as much information as possible from the comparison between experimental data with theoretical simulations, optimizing the chances of identifying New Physics at the LHC. We illustrate this by showing how a search in the CMSSM parameter space, using Bayesian techniques, can effectively find the correct values of the CMSSM parameters by comparing histograms of events with multijets + missing transverse momentum displayed in the effective-mass variable. The procedure is in fact very efficient to identify the true supersymmetric model, in the case supersymmetry is really there and accessible to the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experimentdetector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  3. CMS collaboration, Search strategy for exclusive multi-jet events from supersymmetry at CMS, CMS Physics Analysis Summary CMS-PAS-SUS-09-001, CERN, Geneva Switzerland (2009) [INSPIRE].

  4. ATLAS experiment public results webpage, ttps://twiki.cern.ch/twiki/bin/view/AtlasPublic.

  5. CMS physics results webpage, https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults.

  6. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].

    ADS  Google Scholar 

  7. K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 2: mass spectra for 2 → 2 processes, J. Phys. Soc. Jap. 60 (1991) 836 [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [INSPIRE].

    ADS  Google Scholar 

  10. J. Estrada, Maximal use of kinematic information for the extraction of the mass of the top quark in single-lepton \( t\bar{t} \) events at D0, Ph.D. thesis, FERMILAB-THESIS-2001-07, University of Rochester, Rochester U.S.A. (2001) [INSPIRE].

  11. F. Canelli, Helicity of the W boson in single-lepton tt events, Ph.D. thesis, FERMILAB-THESIS-2003-22, University of Rochester, Rochester U.S.A. (2003) [INSPIRE].

  12. R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp. Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  14. R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Ciafaloni and A. Strumia, Naturalness upper bounds on gauge mediated soft terms, Nucl. Phys. B 494 (1997) 41 [hep-ph/9611204] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Casas, J. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. I. Application to SUSY and seesaw cases, JHEP 11 (2004) 057 [hep-ph/0410298] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.A. Casas, J.R. Espinosa and I. Hidalgo, Implications for new physics from fine-tuning arguments. II. Little Higgs models, JHEP 03 (2005) 038 [hep-ph/0502066] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Strumia, Naturalness of supersymmetric models, hep-ph/9904247 [INSPIRE].

  19. B. Allanach and C. Lester, Multi-dimensional mSUGRA likelihood maps, Phys. Rev. D 73 (2006) 015013 [hep-ph/0507283] [INSPIRE].

    ADS  Google Scholar 

  20. B. Allanach, Naturalness priors and fits to the constrained minimal supersymmetric Standard Model, Phys. Lett. B 635 (2006) 123 [hep-ph/0601089] [INSPIRE].

    ADS  Google Scholar 

  21. R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].

    Article  Google Scholar 

  22. B.C. Allanach, K. Cranmer, C.G. Lester and A.M. Weber, Natural priors, CMSSM fits and LHC weather forecasts, JHEP 08 (2007) 023 [arXiv:0705.0487] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L. Roszkowski, R. Ruiz de Austri and R. Trotta, Implications for the constrained MSSM from a new prediction for b → sγ, JHEP 07 (2007) 075 [arXiv:0705.2012] [INSPIRE].

    Article  ADS  Google Scholar 

  24. O. Buchmueller et al., Predictions for supersymmetric particle masses using indirect experimental and cosmological constraints, JHEP 09 (2008) 117 [arXiv:0808.4128] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Trotta, F. Feroz, M.P. Hobson, L. Roszkowski and R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the constrained MSSM, JHEP 12 (2008) 024 [arXiv:0809.3792] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. Ellis, Prospects for discovering supersymmetry at the LHC, Eur. Phys. J. C 59 (2009) 335 [arXiv:0810.1178] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [INSPIRE].

    ADS  Google Scholar 

  28. O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Cabrera, J. Casas and R. Ruiz de Austri, Bayesian approach and naturalness in MSSM analyses for the LHC, JHEP 03 (2009) 075 [arXiv:0812.0536] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M.E. Cabrera, J.A. Casas and R. Ruiz d Austri, MSSM forecast for the LHC, JHEP 05 (2010) 043 [arXiv:0911.4686] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.O. Berger, B. Liseo and R.L. Wolpert, Integrated likelihood methods for eliminating nuisance variables, Statist. Sci. 14 (1999) 1.

    Article  MathSciNet  MATH  Google Scholar 

  32. B. Allanach, SOFTSUSY: a C++ program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  33. L.E. Ibá nez and C. Lopez, N = 1 supergravity, the weak scale and the low-energy particle spectrum, Nucl. Phys. B 233 (1984) 511 [INSPIRE].

    Article  ADS  Google Scholar 

  34. R.R. de Austri, R. Trotta and L. Roszkowski, A Markov chain Monte Carlo analysis of the CMSSM, JHEP 05 (2006) 002 [hep-ph/0602028] [INSPIRE].

    Article  Google Scholar 

  35. ATLAS collaboration, Search for supersymmetry with jets, missing transverse momentum and one lepton at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2011-090, CERN, Geneva Switzerland (2011).

  36. CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, CMS-PAS-SUS-11-004, CERN, Geneva Switzerland (2011).

  37. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H. Stenzel and S. Tapprogge, Prospect of studies with QCD jets in ATLAS, ATL-PHYS-2000-003, CERN, Geneva Switzerland (2000).

    Google Scholar 

  39. SuperBayeS: SUpersymmetry Parameters Extraction Routines for Bayesian Statistics webpage, http://superbayes.org/.

  40. F. Feroz and M. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].

    Article  ADS  Google Scholar 

  41. F. Feroz, M. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    Article  ADS  Google Scholar 

  43. H. Baer, C.-H. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ruiz de Austri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabrera, M.E., Casas, J.A., Mitsou, V.A. et al. Histogram comparison tools for the search of new physics at LHC. Application to the CMSSM. J. High Energ. Phys. 2012, 133 (2012). https://doi.org/10.1007/JHEP04(2012)133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)133

Keywords

Navigation