ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.
B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.
B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett.
112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, submitted to JCAP (2015) [arXiv:1512.07501] [INSPIRE].
D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].
J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev.
D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].
ADS
Google Scholar
Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP
05 (2013) 100 [arXiv:1211.4873] [INSPIRE].
ADS
Article
Google Scholar
P. Huang and C.E.M. Wagner, Blind spots for neutralino dark matter in the MSSM with an intermediate m
A
, Phys. Rev.
D 90 (2014) 015018 [arXiv:1404.0392] [INSPIRE].
ADS
Google Scholar
U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept.
496 (2010) 1 [arXiv:0910.1785] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B.R. Greene and P.J. Miron, Supersymmetric cosmology with a gauge singlet, Phys. Lett.
B 168 (1986) 226 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Flores, K.A. Olive and D. Thomas, A new dark matter candidate in the minimal extension of the supersymmetric standard model, Phys. Lett.
B 245 (1990) 509 [INSPIRE].
ADS
Article
Google Scholar
G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP
09 (2005) 001 [hep-ph/0505142] [INSPIRE].
Article
Google Scholar
D.G. Cerdeno, C. Hugonie, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM, JHEP
12 (2004) 048 [hep-ph/0408102] [INSPIRE].
ADS
Article
Google Scholar
D.G. Cerdeno, E. Gabrielli, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Phenomenological viability of neutralino dark matter in the NMSSM, JCAP
06 (2007) 008 [hep-ph/0701271] [INSPIRE].
ADS
Article
Google Scholar
V. Barger, P. Langacker, I. Lewis, M. McCaskey, G. Shaughnessy and B. Yencho, Recoil detection of the lightest neutralino in MSSM singlet extensions, Phys. Rev.
D 75 (2007) 115002 [hep-ph/0702036] [INSPIRE].
ADS
Google Scholar
D. Das and U. Ellwanger, Light dark matter in the NMSSM: upper bounds on direct detection cross sections, JHEP
09 (2010) 085 [arXiv:1007.1151] [INSPIRE].
ADS
Article
Google Scholar
J. Kozaczuk and S. Profumo, Light NMSSM neutralino dark matter in the wake of CDMS II and a 126 GeV Higgs boson, Phys. Rev.
D 89 (2014) 095012 [arXiv:1308.5705] [INSPIRE].
ADS
Google Scholar
J. Cao, C. Han, L. Wu, P. Wu and J.M. Yang, A light SUSY dark matter after CDMS-II, LUX and LHC Higgs data, JHEP
05 (2014) 056 [arXiv:1311.0678] [INSPIRE].
ADS
Article
Google Scholar
T. Han, Z. Liu and S. Su, Light neutralino dark matter: direct/indirect detection and collider searches, JHEP
08 (2014) 093 [arXiv:1406.1181] [INSPIRE].
ADS
Article
Google Scholar
R. Enberg, S. Munir, C. Pérez de los Heros and D. Werder, Prospects for higgsino-singlino dark matter detection at IceCube and PINGU, arXiv:1506.05714 [INSPIRE].
C. Cheung and D. Sanford, Simplified models of mixed dark matter, JCAP
02 (2014) 011 [arXiv:1311.5896] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-doublet model: dark matter searches and LHC constraints, JHEP
10 (2015) 116 [arXiv:1505.03867] [INSPIRE].
ADS
Article
Google Scholar
M. Badziak, M. Olechowski and S. Pokorski, New regions in the NMSSM with a 125 GeV Higgs, JHEP
06 (2013) 043 [arXiv:1304.5437] [INSPIRE].
ADS
Article
Google Scholar
DELPHI, OPAL, ALEPH, LEP Working Group for Higgs Boson Searches and L3 collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J.
C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].
LEP Higgs Working Group for Higgs boson searches collaboration, Flavor independent search for hadronically decaying neutral Higgs bosons at LEP, hep-ex/0107034 [INSPIRE].
U. Ellwanger and C. Hugonie, The semi-constrained NMSSM satisfying bounds from the LHC, LUX and Planck, JHEP
08 (2014) 046 [arXiv:1405.6647] [INSPIRE].
ADS
Article
Google Scholar
M. Badziak, A. Delgado, M. Olechowski, S. Pokorski and K. Sakurai, Detecting underabundant neutralinos, JHEP
11 (2015) 053 [arXiv:1506.07177] [INSPIRE].
ADS
Article
Google Scholar
G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept.
267 (1996) 195 [hep-ph/9506380] [INSPIRE].
ADS
Article
Google Scholar
U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP
02 (2005) 066 [hep-ph/0406215] [INSPIRE].
ADS
Article
Google Scholar
U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun.
175 (2006) 290 [hep-ph/0508022] [INSPIRE].
ADS
Article
MATH
Google Scholar
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs
3
: a program for calculating dark matter observables, Comput. Phys. Commun.
185 (2014) 960 [arXiv:1305.0237] [INSPIRE].
ADS
Article
Google Scholar
XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett.
111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].
IceCube collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the sun with the 79-string IceCube detector and implications for supersymmetry, arXiv:1601.00653 [INSPIRE].
R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a light Higgs boson, Phys. Rev.
D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].
ADS
Google Scholar
L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP
04 (2012) 131 [arXiv:1112.2703] [INSPIRE].
ADS
Article
Google Scholar
J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP
07 (2011) 005 [arXiv:1104.0228] [INSPIRE].
ADS
Article
MATH
Google Scholar
J. Hisano, K. Ishiwata and N. Nagata, QCD effects on direct detection of wino dark matter, JHEP
06 (2015) 097 [arXiv:1504.00915] [INSPIRE].
ADS
Article
Google Scholar
R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett.
B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].
ADS
Article
Google Scholar
ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at
\( \sqrt{s}=8 \)
TeV with the ATLAS detector, JHEP
11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP
10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
J. Cao, L. Shang, P. Wu, J.M. Yang and Y. Zhang, Interpreting the galactic center gamma-ray excess in the NMSSM, JHEP
10 (2015) 030 [arXiv:1506.06471] [INSPIRE].
ADS
Article
Google Scholar
D. Barducci, A. Belyaev, A.K.M. Bharucha, W. Porod and V. Sanz, Uncovering natural supersymmetry via the interplay between the LHC and direct dark matter detection, JHEP
07 (2015) 066 [arXiv:1504.02472] [INSPIRE].
ADS
Article
Google Scholar
J. Cao, Y. He, L. Shang, W. Su and Y. Zhang, Testing the light dark matter scenario of the MSSM at the LHC, arXiv:1511.05386 [INSPIRE].
U. Ellwanger, Testing the higgsino-singlino sector of the NMSSM with trileptons at the LHC, JHEP
11 (2013) 108 [arXiv:1309.1665] [INSPIRE].
ADS
Article
Google Scholar
G. Chalons, M.J. Dolan and C. McCabe, Neutralino dark matter and the Fermi gamma-ray lines, JCAP
02 (2013) 016 [arXiv:1211.5154] [INSPIRE].
ADS
Article
Google Scholar
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun.
180 (2009) 747 [arXiv:0803.2360] [INSPIRE].
ADS
Article
MATH
Google Scholar