Skip to main content

Blind spots for neutralino dark matter in the NMSSM

A preprint version of the article is available at arXiv.

Abstract

Spin-independent cross-section for neutralino dark matter scattering off nuclei is investigated in the NMSSM. Several classes of blind spots for direct detection of singlino-Higgsino dark matter are analytically identified, including such that have no analog in the MSSM. It is shown that mixing of the Higgs doublets with the scalar singlet has a big impact on the position of blind spots in the parameter space. In particular, this mixing allows for more freedom in the sign assignment for the parameters entering the neutralino mass matrix, required for a blind spot to occur, as compared to the MSSM or the NMSSM with decoupled singlet. Moreover, blind spots may occur for any composition of a singlino-Higgsino LSP. Particular attention is paid to cases with the singlet-dominated scalar lighter than the 125 GeV Higgs for which a vanishing tree-level spin-independent scattering cross-section may result from destructive interference between the Higgs and the singlet-dominated scalar exchange. Correlations of the spin-independent scattering cross-section with the Higgs observables are also discussed.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  4. XENON collaboration, E. Aprile et al., Physics reach of the XENON1T dark matter experiment, submitted to JCAP (2015) [arXiv:1512.07501] [INSPIRE].

  5. D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].

  6. J. Billard, L. Strigari and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 (2014) 023524 [arXiv:1307.5458] [INSPIRE].

    ADS  Google Scholar 

  7. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  8. C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].

    ADS  Article  Google Scholar 

  9. P. Huang and C.E.M. Wagner, Blind spots for neutralino dark matter in the MSSM with an intermediate m A , Phys. Rev. D 90 (2014) 015018 [arXiv:1404.0392] [INSPIRE].

    ADS  Google Scholar 

  10. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. B.R. Greene and P.J. Miron, Supersymmetric cosmology with a gauge singlet, Phys. Lett. B 168 (1986) 226 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. R. Flores, K.A. Olive and D. Thomas, A new dark matter candidate in the minimal extension of the supersymmetric standard model, Phys. Lett. B 245 (1990) 509 [INSPIRE].

    ADS  Article  Google Scholar 

  13. G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].

    Article  Google Scholar 

  14. D.G. Cerdeno, C. Hugonie, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Theoretical predictions for the direct detection of neutralino dark matter in the NMSSM, JHEP 12 (2004) 048 [hep-ph/0408102] [INSPIRE].

    ADS  Article  Google Scholar 

  15. D.G. Cerdeno, E. Gabrielli, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Phenomenological viability of neutralino dark matter in the NMSSM, JCAP 06 (2007) 008 [hep-ph/0701271] [INSPIRE].

    ADS  Article  Google Scholar 

  16. V. Barger, P. Langacker, I. Lewis, M. McCaskey, G. Shaughnessy and B. Yencho, Recoil detection of the lightest neutralino in MSSM singlet extensions, Phys. Rev. D 75 (2007) 115002 [hep-ph/0702036] [INSPIRE].

    ADS  Google Scholar 

  17. D. Das and U. Ellwanger, Light dark matter in the NMSSM: upper bounds on direct detection cross sections, JHEP 09 (2010) 085 [arXiv:1007.1151] [INSPIRE].

    ADS  Article  Google Scholar 

  18. J. Kozaczuk and S. Profumo, Light NMSSM neutralino dark matter in the wake of CDMS II and a 126 GeV Higgs boson, Phys. Rev. D 89 (2014) 095012 [arXiv:1308.5705] [INSPIRE].

    ADS  Google Scholar 

  19. J. Cao, C. Han, L. Wu, P. Wu and J.M. Yang, A light SUSY dark matter after CDMS-II, LUX and LHC Higgs data, JHEP 05 (2014) 056 [arXiv:1311.0678] [INSPIRE].

    ADS  Article  Google Scholar 

  20. T. Han, Z. Liu and S. Su, Light neutralino dark matter: direct/indirect detection and collider searches, JHEP 08 (2014) 093 [arXiv:1406.1181] [INSPIRE].

    ADS  Article  Google Scholar 

  21. R. Enberg, S. Munir, C. Pérez de los Heros and D. Werder, Prospects for higgsino-singlino dark matter detection at IceCube and PINGU, arXiv:1506.05714 [INSPIRE].

  22. C. Cheung and D. Sanford, Simplified models of mixed dark matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-doublet model: dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].

    ADS  Article  Google Scholar 

  24. M. Badziak, M. Olechowski and S. Pokorski, New regions in the NMSSM with a 125 GeV Higgs, JHEP 06 (2013) 043 [arXiv:1304.5437] [INSPIRE].

    ADS  Article  Google Scholar 

  25. DELPHI, OPAL, ALEPH, LEP Working Group for Higgs Boson Searches and L3 collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

  26. LEP Higgs Working Group for Higgs boson searches collaboration, Flavor independent search for hadronically decaying neutral Higgs bosons at LEP, hep-ex/0107034 [INSPIRE].

  27. U. Ellwanger and C. Hugonie, The semi-constrained NMSSM satisfying bounds from the LHC, LUX and Planck, JHEP 08 (2014) 046 [arXiv:1405.6647] [INSPIRE].

    ADS  Article  Google Scholar 

  28. M. Badziak, A. Delgado, M. Olechowski, S. Pokorski and K. Sakurai, Detecting underabundant neutralinos, JHEP 11 (2015) 053 [arXiv:1506.07177] [INSPIRE].

    ADS  Article  Google Scholar 

  29. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    ADS  Article  Google Scholar 

  30. U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].

    ADS  Article  Google Scholar 

  31. U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  32. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3 : a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

    ADS  Article  Google Scholar 

  33. XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301 [arXiv:1301.6620] [INSPIRE].

  34. IceCube collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the sun with the 79-string IceCube detector and implications for supersymmetry, arXiv:1601.00653 [INSPIRE].

  35. R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a light Higgs boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].

    ADS  Google Scholar 

  36. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    ADS  Article  Google Scholar 

  37. J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP 07 (2011) 005 [arXiv:1104.0228] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  38. J. Hisano, K. Ishiwata and N. Nagata, QCD effects on direct detection of wino dark matter, JHEP 06 (2015) 097 [arXiv:1504.00915] [INSPIRE].

    ADS  Article  Google Scholar 

  39. R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett. B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].

    ADS  Article  Google Scholar 

  40. ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].

  41. CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].

  42. J. Cao, L. Shang, P. Wu, J.M. Yang and Y. Zhang, Interpreting the galactic center gamma-ray excess in the NMSSM, JHEP 10 (2015) 030 [arXiv:1506.06471] [INSPIRE].

    ADS  Article  Google Scholar 

  43. D. Barducci, A. Belyaev, A.K.M. Bharucha, W. Porod and V. Sanz, Uncovering natural supersymmetry via the interplay between the LHC and direct dark matter detection, JHEP 07 (2015) 066 [arXiv:1504.02472] [INSPIRE].

    ADS  Article  Google Scholar 

  44. J. Cao, Y. He, L. Shang, W. Su and Y. Zhang, Testing the light dark matter scenario of the MSSM at the LHC, arXiv:1511.05386 [INSPIRE].

  45. U. Ellwanger, Testing the higgsino-singlino sector of the NMSSM with trileptons at the LHC, JHEP 11 (2013) 108 [arXiv:1309.1665] [INSPIRE].

    ADS  Article  Google Scholar 

  46. G. Chalons, M.J. Dolan and C. McCabe, Neutralino dark matter and the Fermi gamma-ray lines, JCAP 02 (2013) 016 [arXiv:1211.5154] [INSPIRE].

    ADS  Article  Google Scholar 

  47. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Szczerbiak.

Additional information

ArXiv ePrint: 1512.02472

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Badziak, M., Olechowski, M. & Szczerbiak, P. Blind spots for neutralino dark matter in the NMSSM. J. High Energ. Phys. 2016, 179 (2016). https://doi.org/10.1007/JHEP03(2016)179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2016)179

Keywords

  • Supersymmetry Phenomenology