Skip to main content
Log in

Direct detection of electroweak-interacting dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Assuming that the lightest neutral component in an SU(2) L gauge multiplet is the main ingredient of dark matter in the universe, we calculate the elastic scattering cross section of the dark matter with nucleon, which is an important quantity for the direct detection experiments. When the dark matter is a real scalar or a Majorana fermion which has only electroweak gauge interactions, the scattering with quarks and gluon are induced through one- and two-loop quantum processes, respectively, and both of them give rise to comparable contributions to the elastic scattering cross section. We evaluate all of the contributions at the leading order and find that there is an accidental cancellation among them. As a result, the spin-independent cross section is found to be \( \mathcal{O}\left( {{{10}^{ - \left( {46 - 48} \right)}}} \right) \) cm2, which is far below the current experimental bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [SPIRES].

    Article  ADS  Google Scholar 

  2. XENON100 collaboration, E. Aprile et al., First Dark Matter Results from the XENON100 Experiment, Phys. Rev. Lett. 105 (2010) 131302 [arXiv:1005.0380] [SPIRES].

    Article  ADS  Google Scholar 

  3. XENON100 collaboration, E. Aprile et al., Likelihood Approach to the First Dark Matter Results from XENON100, arXiv:1103.0303 [SPIRES].

  4. M. Drees, M.M. Nojiri, D.P. Roy and Y. Yamada, Light Higgsino dark matter, Phys. Rev. D 56 (1997) 276 [Erratum ibid D 64 (2001) 039901] [hep-ph/9701219] [SPIRES].

    ADS  Google Scholar 

  5. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Direct detection of the Wino-and Higgsino-like neutralino dark matters at one-loop level, Phys. Rev. D 71 (2005) 015007 [hep-ph/0407168] [SPIRES].

    ADS  Google Scholar 

  6. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].

    Article  ADS  Google Scholar 

  7. R. Essig, Direct Detection of Non-Chiral Dark Matter, Phys. Rev. D 78 (2008) 015004 [arXiv:0710.1668] [SPIRES].

    ADS  Google Scholar 

  8. J. Hisano, K. Ishiwata and N. Nagata, A complete calculation for direct detection of Wino dark matter, Phys. Lett. B 690 (2010) 311 [arXiv:1004.4090] [SPIRES].

    ADS  Google Scholar 

  9. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [SPIRES].

    Article  ADS  Google Scholar 

  10. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative Effect on Thermal Relic Abundance of Dark Matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [SPIRES].

    ADS  Google Scholar 

  11. J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [SPIRES].

    Article  ADS  Google Scholar 

  12. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [SPIRES].

    ADS  Google Scholar 

  13. M. Drees and M. Nojiri, Neutralino-Nucleon Scattering Revisited, Phys. Rev. D 48 (1993) 3483 [hep-ph/9307208] [SPIRES].

    ADS  Google Scholar 

  14. J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev. D 82 (2010) 115007 [arXiv:1007.2601] [SPIRES].

    ADS  Google Scholar 

  15. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].

    Article  ADS  Google Scholar 

  16. H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Corsetti and P. Nath, Gaugino Mass Nonuniversality and Dark Matter in SUGRA, Strings and D-brane Models, Phys. Rev. D 64 (2001) 125010 [hep-ph/0003186] [SPIRES].

    ADS  Google Scholar 

  18. H. Ohki et al., Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry, Phys. Rev. D 78 (2008) 054502 [arXiv:0806.4744] [SPIRES].

    ADS  Google Scholar 

  19. H.-Y. Cheng, ‘Low-Energy Interactions Of Scalar And Pseudoscalar Higgs Bosons With Baryons, Phys. Lett. B 219 (1989) 347 [SPIRES].

    ADS  Google Scholar 

  20. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  21. J. Hisano, K. Ishiwata, N. Nagata and M. Yamanaka, Direct Detection of Vector Dark Matter, arXiv:1012.5455 [SPIRES].

  22. Spin Muon collaboration, D. Adams et al., A New Measurement Of The Spin Dependent Structure Function g 1(x) Of The Deuteron, Phys. Lett. B 357 (1995) 248 [SPIRES].

    Google Scholar 

  23. A. Djouadi and M. Drees, QCD corrections to neutralino nucleon scattering, Phys. Lett. B 484 (2000) 183 [hep-ph/0004205] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Ishiwata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisano, J., Ishiwata, K., Nagata, N. et al. Direct detection of electroweak-interacting dark matter. J. High Energ. Phys. 2011, 5 (2011). https://doi.org/10.1007/JHEP07(2011)005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)005

Keywords

Navigation