Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Black hole interactions at large D: brane blobology
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Rotating black holes and black bars at large D

18 September 2018

Tomás Andrade, Roberto Emparan & David Licht

Black branes with cosmological constant

20 May 2022

Rhucha Deshpande & Oleg Lunin

Rotating kinky braneworlds

31 July 2018

Florian Niedermann & Paul M. Saffin

Quantum BTZ black hole

25 November 2020

Roberto Emparan, Antonia Micol Frassino & Benson Way

At the end of the world: Local Dynamical Cobordism

24 June 2022

Roberta Angius, José Calderón-Infante, … Angel M. Uranga

Holographic BCFT spectra from brane mergers

29 November 2022

Shovon Biswas, Jani Kastikainen, … James Sully

Multi-kink braneworld configurations in the scalar-tensor representation of f(R, T) gravity

03 September 2022

D. Bazeia, A. S. Lobão Jr. & João Luís Rosa

Comments on D3-brane holography

09 November 2020

Soumangsu Chakraborty, Amit Giveon & David Kutasov

The Gravitational Path Integral for $$ N=4$$ N = 4 BPS Black Holes from Black Hole Microstate Counting

29 March 2023

Gabriel Lopes Cardoso, Abhiram Kidambi, … Martí Rosselló

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 16 February 2021

Black hole interactions at large D: brane blobology

  • Ryotaku Suzuki1,2 

Journal of High Energy Physics volume 2021, Article number: 131 (2021) Cite this article

  • 160 Accesses

  • 4 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

In the large dimension (D) limit, Einstein’s equation reduces to an effective theory on the horizon surface, drastically simplifying the black hole analysis. Especially, the effective theory on the black brane has been successful in describing the non-linear dynamics not only of black branes, but also of compact black objects which are encoded as solitary Gaussian-shaped lumps, blobs. For a rigidly rotating ansatz, in addition to axisymmetric deformed branches, various non-axisymmetric solutions have been found, such as black bars, which only stay stationary in the large D limit.

In this article, we demonstrate the blob approximation has a wider range of applicability by formulating the interaction between blobs and subsequent dynamics. We identify that this interaction occurs via thin necks connecting blobs. Especially, black strings are well captured in this approximation sufficiently away from the perturbative regime. Highly deformed black dumbbells and ripples are also found to be tractable in the approximation. By defining the local quantities, the effective force acting on distant blobs are evaluated as well. These results reveal that the large D effective theory is capable of describing not only individual black holes but also the gravitational interactions between them, as a full dynamical theory of interactive blobs, which we call brane blobology.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R. Emparan and H. S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].

    Article  MATH  Google Scholar 

  2. R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. L. Lehner and F. Pretorius, Black strings, low viscosity fluids, and violation of cosmic censorship, Phys. Rev. Lett. 105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Figueras, M. Kunesch and S. Tunyasuvunakool, End point of black ring instabilities and the weak cosmic censorship conjecture, Phys. Rev. Lett. 116 (2016) 071102 [arXiv:1512.04532] [INSPIRE].

    Article  ADS  Google Scholar 

  6. H. Bantilan, P. Figueras, M. Kunesch and R. Panosso Macedo, End point of nonaxisymmetric black hole instabilities in higher dimensions, Phys. Rev. D 100 (2019) 086014 [arXiv:1906.10696] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. R. Emparan, R. Suzuki and K. Tanabe, The large D limit of general relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. R. Emparan and C. P. Herzog, Large D limit of Einstein’s equations, Rev. Mod. Phys. 92 (2020) 045005 [arXiv:2003.11394] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Rozali and B. Way, Gravitating scalar stars in the large D limit, JHEP 11 (2018) 106 [arXiv:1807.10283] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. R. Emparan and R. Suzuki, Topology-changing horizons at large D as Ricci flows, JHEP 07 (2019) 094 [arXiv:1905.01062] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. R. Emparan, T. Shiromizu, R. Suzuki, K. Tanabe and T. Tanaka, Effective theory of black holes in the 1/D expansion, JHEP 06 (2015) 159 [arXiv:1504.06489] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. R. Emparan, R. Suzuki and K. Tanabe, Evolution and end point of the black string instability: large D solution, Phys. Rev. Lett. 115 (2015) 091102 [arXiv:1506.06772] [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Emparan, K. Izumi, R. Luna, R. Suzuki and K. Tanabe, Hydro-elastic complementarity in black branes at large D, JHEP 06 (2016) 117 [arXiv:1602.05752] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Bhattacharyya, A. De, S. Minwalla, R. Mohan and A. Saha, A membrane paradigm at large D, JHEP 04 (2016) 076 [arXiv:1504.06613] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. S. Bhattacharyya, M. Mandlik, S. Minwalla and S. Thakur, A charged membrane paradigm at large D, JHEP 04 (2016) 128 [arXiv:1511.03432] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. R. Suzuki and K. Tanabe, Non-uniform black strings and the critical dimension in the 1/D expansion, JHEP 10 (2015) 107 [arXiv:1506.01890] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. C. P. Herzog, M. Spillane and A. Yarom, The holographic dual of a Riemann problem in a large number of dimensions, JHEP 08 (2016) 120 [arXiv:1605.01404] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M. Rozali and A. Vincart-Emard, On brane instabilities in the large D limit, JHEP 08 (2016) 166 [arXiv:1607.01747] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. B. Chen and P.-C. Li, Instability of charged Gauss-Bonnet black hole in de Sitter spacetime at large D, arXiv:1607.04713 [INSPIRE].

  20. B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet black strings at large D, JHEP 10 (2017) 123 [arXiv:1707.09766] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. M. Rozali, E. Sabag and A. Yarom, Holographic turbulence in a large number of dimensions, JHEP 04 (2018) 065 [arXiv:1707.08973] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. R. Emparan, R. Luna, M. Martínez, R. Suzuki and K. Tanabe, Phases and stability of non-uniform black strings, JHEP 05 (2018) 104 [arXiv:1802.08191] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. J. Casalderrey-Solana, C. P. Herzog and B. Meiring, Holographic Bjorken flow at large-D, JHEP 01 (2019) 181 [arXiv:1810.02314] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. N. Iizuka, A. Ishibashi and K. Maeda, Cosmic censorship at large D: stability analysis in polarized AdS black branes (holes), JHEP 03 (2018) 177 [arXiv:1801.07268] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K. Tanabe, Black rings at large D, JHEP 02 (2016) 151 [arXiv:1510.02200] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. K. Tanabe, Elastic instability of black rings at large D, arXiv:1605.08116 [INSPIRE].

  27. K. Tanabe, Charged rotating black holes at large D, arXiv:1605.08854 [INSPIRE].

  28. B. Chen, P.-C. Li and Z.-z. Wang, Charged black rings at large D, JHEP 04 (2017) 167 [arXiv:1702.00886] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. M. Mandlik and S. Thakur, Stationary solutions from the large D membrane paradigm, JHEP 11 (2018) 026 [arXiv:1806.04637] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. B. Chen, P.-C. Li and C.-Y. Zhang, Einstein-Gauss-Bonnet black rings at large D, JHEP 07 (2018) 067 [arXiv:1805.03345] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. T. Andrade, R. Emparan and D. Licht, Rotating black holes and black bars at large D, JHEP 09 (2018) 107 [arXiv:1807.01131] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. T. Andrade, R. Emparan and D. Licht, Charged rotating black holes in higher dimensions, JHEP 02 (2019) 076 [arXiv:1810.06993] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. Licht, R. Luna and R. Suzuki, Black ripples, flowers and dumbbells at large D, JHEP 04 (2020) 108 [arXiv:2002.07813] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. T. Andrade, R. Emparan, D. Licht and R. Luna, Cosmic censorship violation in black hole collisions in higher dimensions, JHEP 04 (2019) 121 [arXiv:1812.05017] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. T. Andrade, R. Emparan, D. Licht and R. Luna, Black hole collisions, instabilities, and cosmic censorship violation at large D, JHEP 09 (2019) 099 [arXiv:1908.03424] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. T. Andrade, R. Emparan, A. Jansen, D. Licht, R. Luna and R. Suzuki, Entropy production and entropic attractors in black hole fusion and fission, JHEP 08 (2020) 098 [arXiv:2005.14498] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Bhattacharyya et al., Currents and Radiation from the large D Black Hole Membrane, JHEP 05 (2017) 098 [arXiv:1611.09310] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. Y. Dandekar, S. Kundu, S. Mazumdar, S. Minwalla, A. Mishra and A. Saha, An action for and hydrodynamics from the improved large D membrane, JHEP 09 (2018) 137 [arXiv:1712.09400] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. R. Emparan and R. C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. O. J. C. Dias, J. E. Santos and B. Way, Rings, ripples, and rotation: connecting black holes to black rings, JHEP 07 (2014) 045 [arXiv:1402.6345] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Emparan, P. Figueras and M. Martinez, Bumpy black holes, JHEP 12 (2014) 072 [arXiv:1410.4764] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. R. Emparan and P. Figueras, Multi-black rings and the phase diagram of higher-dimensional black holes, JHEP 11 (2010) 022 [arXiv:1008.3243] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. Armas and T. Harmark, Black holes and biophysical (mem)-branes, Phys. Rev. D 90 (2014) 124022 [arXiv:1402.6330] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Mandlik, Black rings in large D membrane paradigm at the first order, JHEP 02 (2021) 036 [arXiv:2006.16163] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. R. Emparan, T. Harmark, V. Niarchos, N. A. Obers and M. J. Rodriguez, The phase structure of higher-dimensional black rings and black holes, JHEP 10 (2007) 110 [arXiv:0708.2181] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. J. E. Santos and B. Way, Neutral black rings in five dimensions are unstable, Phys. Rev. Lett. 114 (2015) 221101 [arXiv:1503.00721] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Armas and E. Parisini, Instabilities of thin black rings: closing the gap, JHEP 04 (2019) 169 [arXiv:1901.09369] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. O. J. C. Dias, J. E. Santos and B. Way, Lattice black branes: sphere packing in general relativity, JHEP 05 (2018) 111 [arXiv:1712.07663] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain

    Ryotaku Suzuki

  2. Department of Physics, Osaka City University, Sugimoto 3-3-138, Osaka, 558-8585, Japan

    Ryotaku Suzuki

Authors
  1. Ryotaku Suzuki
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ryotaku Suzuki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2009.11823

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R. Black hole interactions at large D: brane blobology. J. High Energ. Phys. 2021, 131 (2021). https://doi.org/10.1007/JHEP02(2021)131

Download citation

  • Received: 06 October 2020

  • Revised: 09 January 2021

  • Accepted: 09 January 2021

  • Published: 16 February 2021

  • DOI: https://doi.org/10.1007/JHEP02(2021)131

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Classical Theories of Gravity
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.