Skip to main content
Log in

The large D limit of General Relativity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

General Relativity simplifies dramatically in the limit that the number of spacetime dimensions D is infinite: it reduces to a theory of non-interacting particles, of finite radius but vanishingly small cross sections, which do not emit nor absorb radiation of any finite frequency. Non-trivial black hole dynamics occurs at length scales that are 1/D times smaller than the horizon radius, and at frequencies D times larger than the inverse of this radius. This separation of scales at large D, which is due to the large gradient of the gravitational potential near the horizon, allows an effective theory of black hole dynamics. We develop to leading order in 1/D this effective description for massless scalar fields and compute analytically the scalar absorption probability. We solve to next-to-next-to-leading order the black brane instability, with very accurate results that improve on previous approximations with other methods. These examples demonstrate that problems that can be formulated in an arbitrary number of dimensions may be tractable in analytic form, and very efficiently so, in the large D expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.T. Horowitz eds., Black Holes in Higher Dimensions, Cambridge University Press, cambridge U.K. (2012).

    MATH  Google Scholar 

  2. A. Strominger, The inverse dimensional expansion in quantum gravity, Phys. Rev. D 24 (1981) 3082 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. N. Bjerrum-Bohr, Quantum gravity at a large number of dimensions, Nucl. Phys. B 684 (2004) 209 [hep-th/0310263] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. H.W. Hamber and R.M. Williams, Quantum gravity in large dimensions, Phys. Rev. D 73 (2006) 044031 [hep-th/0512003] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. F. Canfora, A. Giacomini and A.R. Zerwekh, Kaluza-Klein theory in the limit of large number of extra dimensions, Phys. Rev. D 80 (2009) 084039 [arXiv:0908.2077] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. B. Kol and E. Sorkin, On black-brane instability in an arbitrary dimension, Class. Quant. Grav. 21 (2004) 4793 [gr-qc/0407058] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V. Asnin et al., High and low dimensions in the black hole negative mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M.M. Caldarelli, O.J. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Camps, R. Emparan and N. Haddad, Black brane viscosity and the Gregory-Laflamme instability, JHEP 05 (2010) 042 [arXiv:1003.3636] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Soda, Hierarchical dimensional reduction and gluing geometries, Prog. Theor. Phys. 89 (1993) 1303 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Grumiller, W. Kummer and D. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. H. Yoshino and Y. Nambu, High-energy headon collisions of particles and hoop conjecture, Phys. Rev. D 66 (2002) 065004 [gr-qc/0204060] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Hod, Quantum buoyancy, generalized second law and higher-dimensional entropy bounds, JHEP 12 (2010) 033 [arXiv:1101.3151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Hod, Higher-dimensional violations of the holographic entropy bound, Phys. Lett. B 695 (2011) 294 [arXiv:1106.3817] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. S. Hod, Bulk emission by higher-dimensional black holes: Almost perfect blackbody radiation, Class. Quant. Grav. 28 (2011) 105016 [arXiv:1107.0797] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Hod, Hyperentropic systems and the generalized second law of thermodynamics, Phys. Lett. B 700 (2011) 75 [arXiv:1108.0744] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. F.S. Coelho, C. Herdeiro and M.O. Sampaio, Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula, Phys. Rev. Lett. 108 (2012) 181102 [arXiv:1203.5355] [INSPIRE].

    Article  ADS  Google Scholar 

  19. F.S. Coelho, C. Herdeiro, C. Rebelo and M. Sampaio, Radiation from a D-dimensional collision of shock waves: higher order set up and perturbation theory validity, Phys. Rev. D 87 (2012) 084034 [arXiv:1206.5839] [INSPIRE].

    ADS  Google Scholar 

  20. F. Coelho, C. Herdeiro, C. Rebelo and M. Sampaio, Radiation from a D-dimensional collision of shock waves: an insight allowed by the D parameter, arXiv:1301.1073 [INSPIRE].

  21. M.M. Caldarelli, J. Camps, B. Gouteraux and K. Skenderis, AdS/Ricci-flat correspondence and the Gregory-Laflamme instability, Phys. Rev. D 87 (2013) 061502 [arXiv:1211.2815] [INSPIRE].

    ADS  Google Scholar 

  22. F. Tangherlini, Schwarzschild field in n dimensions and the dimensionality of space problem, Nuovo Cim. 27 (1963) 636 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. R. Gregory and R. Laflamme, The Instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Lehner and F. Pretorius, Black strings, low viscosity fluids and violation of cosmic censorship, Phys. Rev. Lett. 105 (2010) 101102 [arXiv:1006.5960] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. R. Emparan and R.C. Myers, Instability of ultra-spinning black holes, JHEP 09 (2003) 025 [hep-th/0308056] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, New horizons for black holes and branes, JHEP 04 (2010) 046 [arXiv:0912.2352] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Emparan, Rotating circular strings and infinite nonuniqueness of black rings, JHEP 03 (2004) 064 [hep-th/0402149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M.M. Caldarelli, R. Emparan and B. Van Pol, Higher-dimensional rotating charged black holes, JHEP 04 (2011) 013 [arXiv:1012.4517] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Blackfolds in supergravity and string theory, JHEP 08 (2011) 154 [arXiv:1106.4428] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  34. R. Emparan, G.T. Horowitz and R.C. Myers, Black holes radiate mainly on the brane, Phys. Rev. Lett. 85 (2000) 499 [hep-th/0003118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Konoplya, Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach, Phys. Rev. D 68 (2003) 024018 [gr-qc/0303052] [INSPIRE].

    ADS  Google Scholar 

  36. E. Berti, M. Cavaglia and L. Gualtieri, Gravitational energy loss in high-energy particle collisions: Ultrarelativistic plunge into a multidimensional black hole, Phys. Rev. D 69 (2004) 124011 [hep-th/0309203] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. S. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971) 1344 [INSPIRE].

    Article  ADS  Google Scholar 

  38. D.M. Eardley and S.B. Giddings, Classical black hole production in high-energy collisions, Phys. Rev. D 66 (2002) 044011 [gr-qc/0201034] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. V. Cardoso, O.J. Dias and J.P. Lemos, Gravitational radiation in D-dimensional space-times, Phys. Rev. D 67 (2003) 064026 [hep-th/0212168] [INSPIRE].

    ADS  Google Scholar 

  40. B. Kol and M. Smolkin, Black hole stereotyping: induced gravito-static polarization, JHEP 02 (2012) 010 [arXiv:1110.3764] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S.R. Das, G.W. Gibbons and S.D. Mathur, Universality of low-energy absorption cross-sections for black holes, Phys. Rev. Lett. 78 (1997) 417 [hep-th/9609052] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A.A. Starobinsky and S.M. Churilov, Amplification of electromagnetic and gravitational waves scattered by a rotating black hole, Zh. Eksp. Teor. Fiz. 65 (1973) 3.

    ADS  Google Scholar 

  43. W. Unruh, Absorption Cross-Section of Small Black Holes, Phys. Rev. D 14 (1976) 3251 [INSPIRE].

    ADS  Google Scholar 

  44. T. Harmark, J. Natario and R. Schiappa, Greybody factors for d-dimensional black holes, Adv. Theor. Math. Phys. 14 (2010) 727 [arXiv:0708.0017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  45. H. Kodama and A. Ishibashi, A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701 [hep-th/0305147] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. A. Castro, A. Maloney and A. Strominger, Hidden Conformal Symmetry of the Kerr Black Hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. D. Grumiller and R. Jackiw, Liouville gravity from Einstein gravity, arXiv:0712.3775 [INSPIRE].

  49. H. Ooguri, Spectrum of Hawking radiation and Huygensprinciple, Phys. Rev. D 33 (1986) 3573 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Emparan.

Additional information

ArXiv ePrint: 1302.6382

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emparan, R., Suzuki, R. & Tanabe, K. The large D limit of General Relativity. J. High Energ. Phys. 2013, 9 (2013). https://doi.org/10.1007/JHEP06(2013)009

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)009

Keywords

Navigation