Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Polyakov-Mellin bootstrap for AdS loops
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Loops in AdS: from the spectral representation to position space

05 June 2020

Dean Carmi

From conformal correlators to analytic S-matrices: CFT1/QFT2

19 August 2022

Lucía Córdova, Yifei He & Miguel F. Paulos

Loops in AdS: from the spectral representation to position space. Part II

23 July 2021

Dean Carmi

AdS3× S3 tree-level correlators: hidden six-dimensional conformal symmetry

10 October 2019

Leonardo Rastelli, Konstantinos Roumpedakis & Xinan Zhou

One-loop string corrections to AdS amplitudes from CFT

03 March 2021

J.M. Drummond & H. Paul

AdS/CFT unitarity at higher loops: high-energy string scattering

27 May 2020

David Meltzer

Integrable bootstrap for AdS3/CFT2 correlation functions

11 August 2021

Burkhard Eden, Dennis le Plat & Alessandro Sfondrini

The perturbative CFT optical theorem and high-energy string scattering in AdS at one loop

09 April 2021

António Antunes, Miguel S. Costa, … Sourav Sarkar

Spinning AdS loop diagrams: two point functions

05 June 2018

Simone Giombi, Charlotte Sleight & Massimo Taronna

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 03 February 2020

Polyakov-Mellin bootstrap for AdS loops

  • Kausik Ghosh1 

Journal of High Energy Physics volume 2020, Article number: 6 (2020) Cite this article

  • 225 Accesses

  • 16 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We consider holographic CFTs and study their large N expansion. We use Polyakov-Mellin bootstrap to extract the CFT data of all operators, including scalars, till O(1/N4). We add a contact term in Mellin space, which corresponds to an effective ϕ4 theory in AdS and leads to anomalous dimensions for scalars at O(1/N2). Using this we fix O(1/N4) anomalous dimensions for double trace operators finding perfect agreement with [1] (for ∆ϕ = 2). Our approach generalizes this to any dimensions and any value of conformal dimensions of external scalar field. In the second part of the paper, we compute the loop amplitude in AdS which corresponds to non-planar correlators of in CFT. More precisely, using CFT data at O(1/N4) we fix the AdS bubble diagram and the triangle diagram for the general case.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

  4. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

  5. F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) Models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D. Poland, S. Rychkov and A. Vichi, The Conformal Bootstrap: Theory, Numerical Techniques and Applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

  7. S. Rychkov and Z.M. Tan, The ϵ-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].

  8. D. Simmons-Duffin, The Lightcone Bootstrap and the Spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. Komargodski and A. Zhiboedov, Convexity and Liberation at Large Spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The Analytic Bootstrap and AdS Superhorizon Locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP 11 (2015) 083 [arXiv:1502.01437] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Dey, A. Kaviraj and K. Sen, More on analytic bootstrap for O(N) models, JHEP 06 (2016) 136 [arXiv:1602.04928] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Dey and A. Kaviraj, Towards a Bootstrap approach to higher orders of ϵ-expansion, JHEP 02 (2018) 153 [arXiv:1711.01173] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. L.F. Alday, Large Spin Perturbation Theory for Conformal Field Theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L.F. Alday, J. Henriksson and M. van Loon, Taming the ϵ-expansion with large spin perturbation theory, JHEP 07 (2018) 131 [arXiv:1712.02314] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].

    Google Scholar 

  18. K. Sen and A. Sinha, On critical exponents without Feynman diagrams, J. Phys. A 49 (2016) 445401 [arXiv:1510.07770] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal Bootstrap in Mellin Space, Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].

  20. R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, A Mellin space approach to the conformal bootstrap, JHEP 05 (2017) 027 [arXiv:1611.08407] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. P. Dey, A. Kaviraj and A. Sinha, Mellin space bootstrap for global symmetry, JHEP 07 (2017) 019 [arXiv:1612.05032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Dey, K. Ghosh and A. Sinha, Simplifying large spin bootstrap in Mellin space, JHEP 01 (2018) 152 [arXiv:1709.06110] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Gopakumar and A. Sinha, On the Polyakov-Mellin bootstrap, JHEP 12 (2018) 040 [arXiv:1809.10975] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Cornalba, M.S. Costa and J. Penedones, Eikonal approximation in AdS/CFT: Resumming the gravitational loop expansion, JHEP 09 (2007) 037 [arXiv:0707.0120] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. A.L. Fitzpatrick and J. Kaplan, Analyticity and the Holographic S-matrix, JHEP 10 (2012) 127 [arXiv:1111.6972] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A.L. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matrix, JHEP 10 (2012) 032 [arXiv:1112.4845] [INSPIRE].

    Article  ADS  Google Scholar 

  28. I. Bertan and I. Sachs, Loops in Anti-de Sitter Space, Phys. Rev. Lett. 121 (2018) 101601 [arXiv:1804.01880] [INSPIRE].

    Article  ADS  Google Scholar 

  29. I. Bertan, I. Sachs and E.D. Skvortsov, Quantum ϕ4 Theory in AdS4 and its CFT Dual, JHEP 02 (2019) 099 [arXiv:1810.00907] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E.Y. Yuan, Loops in the Bulk, arXiv:1710.01361 [INSPIRE].

  31. E.Y. Yuan, Simplicity in AdS Perturbative Dynamics, arXiv:1801.07283 [INSPIRE].

  32. S. Giombi, C. Sleight and M. Taronna, Spinning AdS Loop Diagrams: Two Point Functions, JHEP 06 (2018) 030 [arXiv:1708.08404] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. L.F. Alday, A. Bissi and E. Perlmutter, Holographic Reconstruction of AdS Exchanges from Crossing Symmetry, JHEP 08 (2017) 147 [arXiv:1705.02318] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. C. Sleight and M. Taronna, Anomalous Dimensions from Crossing Kernels, JHEP 11 (2018) 089 [arXiv:1807.05941] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. L.F. Alday and S. Caron-Huot, Gravitational S-matrix from CFT dispersion relations, JHEP 12 (2018) 017 [arXiv:1711.02031] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. O. Aharony, L.F. Alday, A. Bissi and R. Yacoby, The Analytic Bootstrap for Large N Chern-Simons Vector Models, JHEP 08 (2018) 166 [arXiv:1805.04377] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. C. Sleight and M. Taronna, Spinning Mellin Bootstrap: Conformal Partial Waves, Crossing Kernels and Applications, Fortsch. Phys. 66 (2018) 1800038 [arXiv:1804.09334] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  39. J. Liu, E. Perlmutter, V. Rosenhaus and D. Simmons-Duffin, d-dimensional SYK, AdS Loops and 6j Symbols, JHEP 03 (2019) 052 [arXiv:1808.00612] [INSPIRE].

  40. M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G.E. Andrews, R. Askey and R Roy, Special functions, Cambridge University Press, (1999).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Centre for High Energy Physics, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India

    Kausik Ghosh

Authors
  1. Kausik Ghosh
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Kausik Ghosh.

Additional information

ArXiv ePrint: 1811.00504

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K. Polyakov-Mellin bootstrap for AdS loops. J. High Energ. Phys. 2020, 6 (2020). https://doi.org/10.1007/JHEP02(2020)006

Download citation

  • Received: 02 August 2019

  • Revised: 06 December 2019

  • Accepted: 10 January 2020

  • Published: 03 February 2020

  • DOI: https://doi.org/10.1007/JHEP02(2020)006

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 1/N Expansion
  • AdS-CFT Correspondence
  • Conformal Field Theory
  • Scattering Amplitudes
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.