A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super Yang-Mills and periodic Wilson loops, JHEP
01 (2011) 134 [arXiv:1011.1899] [INSPIRE].
A. Brandhuber et al., Harmony of super form factors, JHEP
10 (2011) 046 [arXiv:1107.5067] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.
B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].
Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.
B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].
R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys.
B 715 (2005) 499 [hep-th/0412308] [INSPIRE].
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.
94 (2005) 181602 [hep-th/0501052] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP
09 (2004) 006 [hep-th/0403047] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4 super Yang-Mills from MHV vertices, Nucl. Phys.
B 706 (2005) 150 [hep-th/0407214] [INSPIRE].
L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP
06 (2007) 064 [arXiv:0705.0303] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys.
B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].
A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys.
B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys.
B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].
A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP
05 (2013) 135 [arXiv:0905.1473] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP
05 (2012) 082 [arXiv:1201.4170] [INSPIRE].
Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop g → gg splitting amplitudes in QCD, JHEP
08 (2004) 012 [hep-ph/0404293] [INSPIRE].
R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys.
B 725 (2005) 275 [hep-th/0412103] [INSPIRE].
A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.
105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP
08 (2014) 100 [arXiv:1406.1443] [INSPIRE].
ADS
Article
Google Scholar
F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the two-loop dilatation operator and finite remainders, JHEP
10 (2015) 012 [arXiv:1504.06323] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Brandhuber et al., The SU(2|3) dynamic two-loop form factors, JHEP
08 (2016) 134 [arXiv:1606.08682] [INSPIRE].
F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-Loop SL(2) Form Factors and Maximal Transcendentality, JHEP
12 (2016) 090 [arXiv:1610.06567] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Higgs amplitudes from
\( \mathcal{N}=4 \)
super Yang-Mills theory, Phys. Rev. Lett.
119 (2017) 161601 [arXiv:1707.09897] [INSPIRE].
N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP
03 (2010) 020 [arXiv:0907.5418] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Frassek, D. Meidinger, D. Nandan and M. Wilhelm, On-shell diagrams, Graßmannians and integrability for form factors, JHEP
01 (2016) 182 [arXiv:1506.08192] [INSPIRE].
ADS
Article
MATH
Google Scholar
L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, Composite operators in the twistor formulation of N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett.
117 (2016) 011601 [arXiv:1603.04471] [INSPIRE].
L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in
\( \mathcal{N}=4 \)
SYM from twistor space, JHEP
06 (2016) 162 [arXiv:1604.00012] [INSPIRE].
L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, On form factors and correlation functions in twistor space, JHEP
03 (2017) 131 [arXiv:1611.08599] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett.
113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].
ADS
Article
Google Scholar
R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev.
D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].
M. Spradlin and A. Volovich, From twistor string theory to recursion relations, Phys. Rev.
D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].
S. He and Y. Zhang, Connected formulas for amplitudes in standard model, JHEP
03 (2017) 093 [arXiv:1607.02843] [INSPIRE].
ADS
Article
Google Scholar
A. Brandhuber et al., The connected prescription for form factors in twistor space, JHEP
11 (2016) 143 [arXiv:1608.03277] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.V. Bork, On form factors in
\( \mathcal{N}=4 \)
SYM theory and polytopes, JHEP
12 (2014) 111 [arXiv:1407.5568] [INSPIRE].
L.V. Bork and A.I. Onishchenko, Grassmannians and form factors with q
2 = 0 in
\( \mathcal{N}=4 \)
SYM theory, JHEP
12 (2016) 076 [arXiv:1607.00503] [INSPIRE].
D. Chicherin and E. Sokatchev, Composite operators and form factors in
\( \mathcal{N}=4 \)
SYM, J. Phys.
A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE].
N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP
09 (2010) 016 [arXiv:0808.1446] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev.
D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].
J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP
04 (2009) 018 [arXiv:0808.2475] [INSPIRE].
N. Arkani-Hamed et al., The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP
01 (2011) 041 [arXiv:1008.2958] [INSPIRE].
S. Caron-Huot, Loops and trees, JHEP
05 (2011) 080 [arXiv:1007.3224] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A.E. Bolshov, L.V. Bork and A.I. Onishchenko, The all-loop conjecture for integrands of reggeon amplitudes in
\( \mathcal{N}=4 \)
SYM, JHEP
06 (2018) 129 [arXiv:1802.03986] [INSPIRE].
J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP
01 (2007) 064 [hep-th/0607160] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys.
B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 Super-Yang-Mills theory, Nucl. Phys.
B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].
L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP
11 (2007) 068 [arXiv:0710.1060] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP
11 (2010) 104 [arXiv:1009.1139] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Bianchi, A. Brandhuber, R. Panerai and G. Travaglini, Dual conformal invariance for form factors, arXiv:1812.10468 [INSPIRE].
R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudes — Wilson loops duality for the first non-planar correction, JHEP
08 (2018) 122 [arXiv:1802.09395] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Bern, M. Enciso, C.-H. Shen and M. Zeng, Dual conformal structure beyond the planar limit, Phys. Rev. Lett.
121 (2018) 121603 [arXiv:1806.06509] [INSPIRE].
ADS
Article
Google Scholar
J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys.
B 869 (2013) 452 [arXiv:0808.0491] [INSPIRE].
L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP
11 (2009) 045 [arXiv:0909.0250] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Arkani-Hamed et al., Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press, Cambridge U.K. (2016) [arXiv:1212.5605] [INSPIRE].
L.V. Bork, On NMHV form factors in N = 4 SYM theory from generalized unitarity, JHEP
01 (2013) 049 [arXiv:1203.2596] [INSPIRE].
A. Brandhuber, B. Spence and G. Travaglini, From trees to loops and back, JHEP
01 (2006) 142 [hep-th/0510253] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Bullimore, MHV diagrams from an all-line recursion relation, JHEP
08 (2011) 107 [arXiv:1010.5921] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
K. Risager, A direct proof of the CSW rules, JHEP
12 (2005) 003 [hep-th/0508206] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A twistor approach to one-loop amplitudes in N = 1 supersymmetric Yang-Mills theory, Nucl. Phys.
B 706 (2005) 100 [hep-th/0410280] [INSPIRE].
J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop amplitudes and MHV vertices, Nucl. Phys.
B 712 (2005) 59 [hep-th/0412108].