Skip to main content

Form factor recursion relations at loop level

A preprint version of the article is available at arXiv.

Abstract

We introduce a prescription to define form factor integrands at loop level in planar \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory. This relies on a periodic kinematic configuration that has been instrumental to describe form factors at strong coupling in terms of periodic Wilson loops. With this prescription, we are able to formulate loop-level recursion relations for planar form factor integrands, using a two-line (BCFW) and an all-line shift. We also point out important differences with the known recursion relations of integrands of planar loop amplitudes. We present a number of concrete one-loop examples to illustrate and validate our prescription for form factor integrands.

References

  1. A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form factors in N = 4 super Yang-Mills and periodic Wilson loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].

  2. A. Brandhuber et al., Harmony of super form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

  4. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

  5. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

  6. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4 super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150 [hep-th/0407214] [INSPIRE].

  9. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

  11. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].

  12. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

  13. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].

  15. Z. Bern, L.J. Dixon and D.A. Kosower, Two-loop ggg splitting amplitudes in QCD, JHEP 08 (2004) 012 [hep-ph/0404293] [INSPIRE].

  16. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

  17. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. A. Brandhuber, B. Penante, G. Travaglini and C. Wen, The last of the simple remainders, JHEP 08 (2014) 100 [arXiv:1406.1443] [INSPIRE].

    ADS  Article  Google Scholar 

  19. F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm and G. Yang, On-shell methods for the two-loop dilatation operator and finite remainders, JHEP 10 (2015) 012 [arXiv:1504.06323] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. A. Brandhuber et al., The SU(2|3) dynamic two-loop form factors, JHEP 08 (2016) 134 [arXiv:1606.08682] [INSPIRE].

  21. F. Loebbert, C. Sieg, M. Wilhelm and G. Yang, Two-Loop SL(2) Form Factors and Maximal Transcendentality, JHEP 12 (2016) 090 [arXiv:1610.06567] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. A. Brandhuber, M. Kostacinska, B. Penante and G. Travaglini, Higgs amplitudes from \( \mathcal{N}=4 \) super Yang-Mills theory, Phys. Rev. Lett. 119 (2017) 161601 [arXiv:1707.09897] [INSPIRE].

  23. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. R. Frassek, D. Meidinger, D. Nandan and M. Wilhelm, On-shell diagrams, Graßmannians and integrability for form factors, JHEP 01 (2016) 182 [arXiv:1506.08192] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, Composite operators in the twistor formulation of N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016) 011601 [arXiv:1603.04471] [INSPIRE].

  26. L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, All tree-level MHV form factors in \( \mathcal{N}=4 \) SYM from twistor space, JHEP 06 (2016) 162 [arXiv:1604.00012] [INSPIRE].

  27. L. Koster, V. Mitev, M. Staudacher and M. Wilhelm, On form factors and correlation functions in twistor space, JHEP 03 (2017) 131 [arXiv:1611.08599] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

    ADS  Article  Google Scholar 

  29. R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].

  30. M. Spradlin and A. Volovich, From twistor string theory to recursion relations, Phys. Rev. D 80 (2009) 085022 [arXiv:0909.0229] [INSPIRE].

  31. S. He and Y. Zhang, Connected formulas for amplitudes in standard model, JHEP 03 (2017) 093 [arXiv:1607.02843] [INSPIRE].

    ADS  Article  Google Scholar 

  32. A. Brandhuber et al., The connected prescription for form factors in twistor space, JHEP 11 (2016) 143 [arXiv:1608.03277] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. L.V. Bork, On form factors in \( \mathcal{N}=4 \) SYM theory and polytopes, JHEP 12 (2014) 111 [arXiv:1407.5568] [INSPIRE].

  34. L.V. Bork and A.I. Onishchenko, Grassmannians and form factors with q 2 = 0 in \( \mathcal{N}=4 \) SYM theory, JHEP 12 (2016) 076 [arXiv:1607.00503] [INSPIRE].

  35. D. Chicherin and E. Sokatchev, Composite operators and form factors in \( \mathcal{N}=4 \) SYM, J. Phys. A 50 (2017) 275402 [arXiv:1605.01386] [INSPIRE].

  36. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. A. Brandhuber, P. Heslop and G. Travaglini, A note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].

  38. J.M. Drummond and J.M. Henn, All tree-level amplitudes in N = 4 SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].

  39. N. Arkani-Hamed et al., The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

  40. S. Caron-Huot, Loops and trees, JHEP 05 (2011) 080 [arXiv:1007.3224] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. A.E. Bolshov, L.V. Bork and A.I. Onishchenko, The all-loop conjecture for integrands of reggeon amplitudes in \( \mathcal{N}=4 \) SYM, JHEP 06 (2018) 129 [arXiv:1802.03986] [INSPIRE].

  42. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

  44. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 Super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

  45. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. L. Bianchi, A. Brandhuber, R. Panerai and G. Travaglini, Dual conformal invariance for form factors, arXiv:1812.10468 [INSPIRE].

  48. R. Ben-Israel, A.G. Tumanov and A. Sever, Scattering amplitudes — Wilson loops duality for the first non-planar correction, JHEP 08 (2018) 122 [arXiv:1802.09395] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. Z. Bern, M. Enciso, C.-H. Shen and M. Zeng, Dual conformal structure beyond the planar limit, Phys. Rev. Lett. 121 (2018) 121603 [arXiv:1806.06509] [INSPIRE].

    ADS  Article  Google Scholar 

  50. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N = 4 super-amplitudes, Nucl. Phys. B 869 (2013) 452 [arXiv:0808.0491] [INSPIRE].

  51. L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. N. Arkani-Hamed et al., Grassmannian Geometry of Scattering Amplitudes, Cambridge University Press, Cambridge U.K. (2016) [arXiv:1212.5605] [INSPIRE].

  53. L.V. Bork, On NMHV form factors in N = 4 SYM theory from generalized unitarity, JHEP 01 (2013) 049 [arXiv:1203.2596] [INSPIRE].

  54. A. Brandhuber, B. Spence and G. Travaglini, From trees to loops and back, JHEP 01 (2006) 142 [hep-th/0510253] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. M. Bullimore, MHV diagrams from an all-line recursion relation, JHEP 08 (2011) 107 [arXiv:1010.5921] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A twistor approach to one-loop amplitudes in N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 706 (2005) 100 [hep-th/0410280] [INSPIRE].

  58. J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, Non-supersymmetric loop amplitudes and MHV vertices, Nucl. Phys. B 712 (2005) 59 [hep-th/0412108].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Panerai.

Additional information

ArXiv ePrint: 1812.09001

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bianchi, L., Brandhuber, A., Panerai, R. et al. Form factor recursion relations at loop level. J. High Energ. Phys. 2019, 182 (2019). https://doi.org/10.1007/JHEP02(2019)182

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2019)182

Keywords

  • Scattering Amplitudes
  • Supersymmetric Gauge Theory