M.B. Plenio and S. Virmani, An Introduction to entanglement measures, Quant. Inf. Comput.
7 (2007) 1, quant-ph/0504163 [INSPIRE].
L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys.
80 (2008) 517 [quant-ph/0703044] [INSPIRE].
P. Calabrese, J. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys.
A 42 (2009) 500301.
MathSciNet
MATH
Google Scholar
J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys.
82 (2010) 277 [arXiv:0808.3773] [INSPIRE].
ADS
Article
MATH
Google Scholar
N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rept.
646 (2016) 1 [arXiv:1512.03388] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.
B 424 (1994) 443 [hep-th/9403108] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Vidal, J.I. Latorre, E. Rico and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett.
90 (2003) 227902 [quant-ph/0211074] [INSPIRE].
J.I. Latorre, E. Rico and G. Vidal, Ground state entanglement in quantum spin chains, Quant. Inf. Comput.
4 (2004) 48, quant-ph/0304098 [INSPIRE].
P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002.
P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys.
A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].
MathSciNet
MATH
Google Scholar
H. Li and F. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett.
101 (2008) 010504 [INSPIRE].
ADS
Article
Google Scholar
P. Calabrese and J. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. (2005) P04010.
A.M. Kaufman et al., Quantum thermalization through entanglement in an isolated many-body system, Science
353 (2016) 794.
ADS
Article
Google Scholar
V. Alba and P. Calabrese, Entanglement and thermodynamics after a quantum quench in integrable systems, arXiv:1608.00614.
P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett.
109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].
ADS
Article
Google Scholar
P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: a quantum field theory approach, J. Stat. Mech. (2013) P02008.
R.D. Sorkin, 1983 paper on entanglement entropy: “On the Entropy of the Vacuum outside a Horizon”, arXiv:1402.3589 [INSPIRE].
L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev.
D 34 (1986) 373 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Srednicki, Entropy and area, Phys. Rev. Lett.
71 (1993) 666 [hep-th/9303048] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.
96 (2006) 181602 [hep-th/0603001] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys.
A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].
MathSciNet
MATH
Google Scholar
M. Ohya and D. Petz, Quantum entropy and its use, Text and Monographs in Physics, Springer Study Edition, Springer (2004).
H. Araki, Relative Entropy of States of Von Neumann Algebras, Publ. Res. Inst. Math. Sci. Kyoto
1976 (1976) 809 [INSPIRE].
MATH
Google Scholar
V. Vedral, The role of relative entropy in quantum information theory, Rev. Mod. Phys.
74 (2002) 197 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
K.M.R. Audenaert and J. Eisert, Continuity bounds on the quantum relative entropy, J. Math. Phys.
46 (2005) 102104.
ADS
MathSciNet
Article
MATH
Google Scholar
H. Casini, E. Teste and G. Torroba, Relative entropy and the RG flow, arXiv:1611.00016 [INSPIRE].
H. Casini, I.S. Landea and G. Torroba, The g-theorem and quantum information theory, JHEP
10 (2016) 140 [arXiv:1607.00390] [INSPIRE].
ADS
Article
Google Scholar
D.D. Song and E. Winstanley, Information erasure and the generalized second law of black hole thermodynamics, Int. J. Theor. Phys.
47 (2008) 1692 [gr-qc/0009083] [INSPIRE].
X.-K. Guo, Black hole thermodynamics from decoherence, arXiv:1512.05277 [INSPIRE].
H. Casini, Relative entropy and the Bekenstein bound, Class. Quant. Grav.
25 (2008) 205021 [arXiv:0804.2182] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative Entropy and Holography, JHEP
08 (2013) 060 [arXiv:1305.3182] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP
06 (2016) 004 [arXiv:1512.06431] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Lashkari, Relative Entropies in Conformal Field Theory, Phys. Rev. Lett.
113 (2014) 051602 [arXiv:1404.3216] [INSPIRE].
ADS
Article
Google Scholar
N. Lashkari, Modular Hamiltonian for Excited States in Conformal Field Theory, Phys. Rev. Lett.
117 (2016) 041601 [arXiv:1508.03506] [INSPIRE].
ADS
Article
Google Scholar
G. Sárosi and T. Ugajin, Relative entropy of excited states in two dimensional conformal field theories, JHEP
07 (2016) 114 [arXiv:1603.03057] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Ugajin, Mutual information of excited states and relative entropy of two disjoint subsystems in CFT, arXiv:1611.03163 [INSPIRE].
G. Sárosi and T. Ugajin, Relative entropy of excited states in conformal field theories of arbitrary dimensions, arXiv:1611.02959 [INSPIRE].
R. Arias, D. Blanco, H. Casini and M. Huerta, Local temperatures and local terms in modular Hamiltonians, arXiv:1611.08517 [INSPIRE].
V. Balasubramanian, J.J. Heckman and A. Maloney, Relative Entropy and Proximity of Quantum Field Theories, JHEP
05 (2015) 104 [arXiv:1410.6809] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Caputa and M.M. Rams, Quantum dimensions from local operator excitations in the Ising model, J. Phys.
A 50 (2017) 055002 [arXiv:1609.02428] [INSPIRE].
ADS
Google Scholar
A.B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett.
43 (1986) 730 [INSPIRE].
ADS
MathSciNet
Google Scholar
I. Affleck and A.W.W. Ludwig, Universal non-integer “ground state degeneracy” in critical quantum systems, Phys. Rev. Lett.
67 (1991) 161 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys.
17 (1976) 303 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.J. Bisognano and E.H. Wichmann, On the Duality Condition for a Hermitian Scalar Field, J. Math. Phys.
16 (1975) 985 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
W.G. Unruh, Notes on black hole evaporation, Phys. Rev.
D 14 (1976) 870 [INSPIRE].
ADS
Google Scholar
P.D. Hislop and R. Longo, Modular Structure of the Local Algebras Associated With the Free Massless Scalar Field Theory, Commun. Math. Phys.
84 (1982) 71 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP
05 (2011) 036 [arXiv:1102.0440] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
G. Wong, I. Klich, L.A. Pando Zayas and D. Vaman, Entanglement Temperature and Entanglement Entropy of Excited States, JHEP
12 (2013) 020 [arXiv:1305.3291] [INSPIRE].
ADS
Article
Google Scholar
J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech.
1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE].
Article
Google Scholar
H.-Q. Zhou, R. Orus and G. Vidal, Ground State Fidelity from Tensor Network Representations, Phys. Rev. Lett.
100 (2008) 080601 [INSPIRE].
ADS
Article
Google Scholar
P. Zanardi and N. Paunkovic, Ground state overlap and quantum phase transitions, Phys. Rev.
E 74 (2006) 031123.
ADS
MathSciNet
Google Scholar
E.H. Lieb and M.B. Ruskai, A Fundamental Property of Quantum-Mechanical Entropy, Phys. Rev. Lett.
30 (1973) 434 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys.
14 (1973) 1938 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F.C. Alcaraz, M.I. Berganza and G. Sierra, Entanglement of low-energy excitations in Conformal Field Theory, Phys. Rev. Lett.
106 (2011) 201601 [arXiv:1101.2881] [INSPIRE].
ADS
Article
Google Scholar
M. Ibanez Berganza, F.C. Alcaraz and G. Sierra, Entanglement of excited states in critical spin chains, J. Stat. Mech. (2012) P01016.
T. Pálmai, Excited state entanglement in one dimensional quantum critical systems: Extensivity and the role of microscopic details, Phys. Rev.
B 90 (2014) 161404 [arXiv:1406.3182] [INSPIRE].
ADS
Article
Google Scholar
T. Palmai, Entanglement Entropy from the Truncated Conformal Space, Phys. Lett.
B 759 (2016) 439 [arXiv:1605.00444] [INSPIRE].
ADS
Article
Google Scholar
L. Taddia, J.C. Xavier, F.C. Alcaraz and G. Sierra, Entanglement Entropies in Conformal Systems with Boundaries, Phys. Rev.
B 88 (2013) 075112.
ADS
Article
Google Scholar
L. Taddia, F. Ortolani and T. Palmai, Renyi entanglement entropies of descendant states in critical systems with boundaries: conformal field theory and spin chains, J. Stat. Mech. (2016) 093104.
G. Ramirez, J. Rodriguez-Laguna and G. Sierra, Entanglement in low-energy states of the random-hopping model, J. Stat. Mech. (2014) P07003.
P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag, New York, U.S.A. (1997).
F.H.L. Essler, A.M. Läuchli and P. Calabrese, Shell-Filling Effect in the Entanglement Entropies of Spinful Fermions, Phys. Rev. Lett.
110 (2013) 115701.
ADS
Article
Google Scholar
P. Calabrese, F. Essler and A. Läuchli, Entanglement entropies of the quarter filled Hubbard model, J. Stat. Mech. (2014) P09025.
C. De Nobili, A. Coser and E. Tonni, Entanglement entropy and negativity of disjoint intervals in CFT: Some numerical extrapolations J. Stat. Mech. (2015) P06021.
V. Alba, M. Fagotti and P. Calabrese, Entanglement entropy of excited states, J. Stat. Mech. (2009) P10020.
M.-C. Chung and I. Peschel, Density-matrix spectra of solvable fermionic systems, Phys. Rev.
B 64 (2001) 064412 [cond-mat/0103301] [INSPIRE].
I. Peschel, Calculation of reduced density matrices from correlation functions, J. Phys.
A 36 (2003) L205.
ADS
MathSciNet
MATH
Google Scholar
I. Peschel and V. Eisler, Reduced density matrices and entanglement entropy in free lattice models, J. Phys.
A 42 (2009) 504003.
MathSciNet
MATH
Google Scholar
V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint blocks in critical Ising models, Phys. Rev.
B 81 (2010) 060411 [arXiv:0910.0706] [INSPIRE].
ADS
Article
Google Scholar
F. Igloi and I. Peschel, On reduced density matrices for disjoint subsystems, EPL
89 (2010) 40001.
ADS
Article
Google Scholar
M. Fagotti and P. Calabrese, Entanglement entropy of two disjoint blocks in XY chains, J. Stat. Mech. (2010) P04016.
S. Furukawa, V. Pasquier and J. Shiraishi, Mutual Information and Compactification Radius in a c=1 Critical Phase in One Dimension, Phys. Rev. Lett.
102 (2009) 170602 [arXiv:0809.5113] [INSPIRE].
ADS
Article
Google Scholar
P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001.
P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. (2011) P01021.
N. Gliozzi and M. Rajabpour, Entanglement entropy of two disjoint intervals from fusion algebra of twist fields, J. Stat. Mech. (2012) P02016.
A. Coser, L. Tagliacozzo and E. Tonni, On Rényi entropies of disjoint intervals in conformal field theory, J. Stat. Mech. (2014) P01008.
B.-Q. Jin and V.E. Korepin, Quantum Spin Chain, Toeplitz Determinants and the Fisher-Hartwig Conjecture, J. Stat. Phys.
116 (2004) 79.
ADS
MathSciNet
Article
MATH
Google Scholar
J.P. Keating and F. Mezzadri, Random Matrix Theory and Entanglement in Quantum Spin Chains, Commun. Math. Phys.
252 (2004) 543.
ADS
MathSciNet
Article
MATH
Google Scholar
J.P. Keating and F. Mezzadri, Entanglement in quantum spin chains, symmetry classes of random matrices and conformal field theory, Phys. Rev. Lett.
94 (2005) 050501 [quant-ph/0504179] [INSPIRE].
P. Calabrese, M. Campostrini, F. Essler and B. Nienhuis, Parity effects in the scaling of block entanglement in gapless spin chains, Phys. Rev. Lett.
104 (2010) 095701 [arXiv:0911.4660] [INSPIRE].
ADS
Article
Google Scholar
P. Calabrese and F.H.L. Essler, Universal corrections to scaling for block entanglement in spin-1/2 XX chains, J. Stat. Mech. (2010) P08029.
M. Fagotti and P. Calabrese, Universal parity effects in the entanglement entropy of XX chains with open boundary conditions, J. Stat. Mech. (2011) P01017.
P. Calabrese, M. Mintchev and E. Vicari, The entanglement entropy of one-dimensional gases, Phys. Rev. Lett.
107 (2011) 020601 [arXiv:1105.4756] [INSPIRE].
ADS
Article
Google Scholar
P. Calabrese, M. Mintchev and E. Vicari, The entanglement entropy of one-dimensional systems in continuous and homogeneous space, J. Stat. Mech. (2011) P09028.
J. Cardy and P. Calabrese, Unusual Corrections to Scaling in Entanglement Entropy, J. Stat. Mech. (2010) P04023.
K. Ohmori and Y. Tachikawa, Physics at the entangling surface, J. Stat. Mech (2015) P04010.
L. Cevolani, Unusual Corrections to the Scaling of the Entanglement Entropy of the Excited states in Conformal Field Theory, arXiv:1601.01709 [INSPIRE].