Skip to main content

Exploration of the tensor structure of the Higgs boson coupling to weak bosons in e + e collisions

A preprint version of the article is available at arXiv.

Abstract

Probing signatures of anomalous interactions of the Higgs boson with pairs of weak vector bosons is an important goal of an e + e collider commissioned as a Higgs factory. We perform a detailed analysis of such potential of a collider operating at 250 − 300 GeV. Mostly using higher dimensional operators in a gauge-invariant framework, we show that substantial information on anomalous couplings can be extracted from the total rates of s-and t-channel Higgs production. The most obvious kinematic distributions, based on angular dependence of matrix elements, are relatively less sensitive with moderate coefficients of anomalous couplings, unless one goes to higher centre-of-mass energies. Some important quantities to use here, apart from the total event rates, are the ratios of event rates at different energies, ratios of s-and t-channel rates at fixed energies, and under some fortunate circumstances, the correlated changes in the rates for W-boson pair-production. A general scheme of calculating rates with as many as four gauge-invariant operators is also outlined. At the end, we perform a likelihood analysis using phenomenological parametrization of anomalous HWW interaction, and indicate their distinguishability for illustrative values of the strength of such interactions.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. S.L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22 (1961) 579 [INSPIRE].

    Article  Google Scholar 

  4. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Svartholm ed. 8th Nobel symposium, C68-05-19, Sweden (1968) [INSPIRE].

  6. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  9. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  11. T.W.B. Kibble, Symmetry breaking in non-Abelian gauge theories, Phys. Rev. 155 (1967) 1554 [INSPIRE].

    Article  ADS  Google Scholar 

  12. F. Bonnet, M.B. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].

    ADS  Google Scholar 

  13. J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  14. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  15. T. Li, X. Wan, Y.-K. Wang and S.-H. Zhu, Constraints on the universal varying Yukawa couplings: from SM-like to Fermiophobic, JHEP 09 (2012) 086 [arXiv:1203.5083] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Rauch, Determination of Higgs-boson couplings (SFitter), arXiv:1203.6826 [INSPIRE].

  17. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Dührssen et al., Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].

  21. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Desai, D.K. Ghosh and B. Mukhopadhyaya, CP-violating HWW couplings at the Large Hadron Collider, Phys. Rev. D 83 (2011) 113004 [arXiv:1104.3327] [INSPIRE].

    ADS  Google Scholar 

  23. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  25. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].

    ADS  Google Scholar 

  26. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  27. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Baglio, A. Djouadi and R.M. Godbole, The apparent excess in the Higgs to di-photon rate at the LHC: new physics or QCD uncertainties?, Phys. Lett. B 716 (2012) 203 [arXiv:1207.1451] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgs’ face, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].

    Article  ADS  Google Scholar 

  34. F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the standard model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].

    ADS  Google Scholar 

  35. T. Plehn and M. Rauch, Higgs couplings after the discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].

    Article  Google Scholar 

  36. A. Djouadi, Precision Higgs coupling measurements at the LHC through ratios of production cross sections, Eur. Phys. J. C 73 (2013) 2498 [arXiv:1208.3436] [INSPIRE].

    Article  ADS  Google Scholar 

  37. B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].

    ADS  Google Scholar 

  39. G. Bhattacharyya, D. Das and P.B. Pal, Modified Higgs couplings and unitarity violation, Phys. Rev. D 87 (2013) 011702 [arXiv:1212.4651] [INSPIRE].

    ADS  Google Scholar 

  40. D. Choudhury, R. Islam and A. Kundu, Anomalous Higgs couplings as a window to new physics, Phys. Rev. D 88 (2013) 013014 [arXiv:1212.4652] [INSPIRE].

    ADS  Google Scholar 

  41. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].

    Article  Google Scholar 

  42. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings at a linear collider, Europhys. Lett. 101 (2013) 51001 [arXiv:1301.1322] [INSPIRE].

    Article  ADS  Google Scholar 

  43. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision (Higgcision) era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Ellis, V. Sanz and T. You, Associated production evidence against Higgs impostors and anomalous couplings, Eur. Phys. J. C 73 (2013) 2507 [arXiv:1303.0208] [INSPIRE].

    Article  ADS  Google Scholar 

  47. P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].

    Article  ADS  Google Scholar 

  51. W.-F. Chang, W.-P. Pan and F. Xu, Effective gauge-Higgs operators analysis of new physics associated with the Higgs boson, Phys. Rev. D 88 (2013) 033004 [arXiv:1303.7035] [INSPIRE].

    ADS  Google Scholar 

  52. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].

    Article  ADS  Google Scholar 

  53. B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M.B. Einhorn and J. Wudka, Higgs-boson couplings beyond the standard model, Nucl. Phys. B 877 (2013) 792 [arXiv:1308.2255] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].

    Article  ADS  Google Scholar 

  57. ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].

    Article  ADS  Google Scholar 

  58. CMS collaboration, M.E. Chasco, Search for invisible Higgs boson production with the CMS detector at the LHC, arXiv:1310.1002 [INSPIRE].

  59. T. Han and B. Mellado, Higgs boson searches and the \( Hb\overline{b} \) coupling at the LHeC, Phys. Rev. D 82 (2010) 016009 [arXiv:0909.2460] [INSPIRE].

    ADS  Google Scholar 

  60. S.S. Biswal, R.M. Godbole, B. Mellado and S. Raychaudhuri, Azimuthal angle probe of anomalous HWW couplings at a high energy ep collider, Phys. Rev. Lett. 109 (2012) 261801 [arXiv:1203.6285] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S.S. Biswal, R.M. Godbole, R.K. Singh and D. Choudhury, Signatures of anomalous VVH interactions at a linear collider, Phys. Rev. D 73 (2006) 035001 [Erratum ibid. D 74 (2006) 039904] [hep-ph/0509070] [INSPIRE].

  62. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the scalar boson couplings, arXiv:1306.0006 [INSPIRE].

  63. E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].

    ADS  Google Scholar 

  64. T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  65. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    Article  ADS  Google Scholar 

  66. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].

    ADS  Google Scholar 

  67. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  68. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  69. K. Hagiwara, R. Szalapski and D. Zeppenfeld, Anomalous Higgs boson production and decay, Phys. Lett. B 318 (1993) 155 [hep-ph/9308347] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M.C. Gonzalez-Garcia, Anomalous Higgs couplings, Int. J. Mod. Phys. A 14 (1999) 3121 [hep-ph/9902321] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Djouadi, R.M. Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs boson via jet kinematics in vector boson fusion, Phys. Lett. B 723 (2013) 307 [arXiv:1301.4965] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  73. C. Degrande et al., UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  75. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  76. S. Heinemeyer et al., Toward high precision Higgs-boson measurements at the international linear e + e collider, hep-ph/0511332 [INSPIRE].

  77. G. Altarelli, B. Mele and F. Pitolli, Heavy Higgs production at future colliders, Nucl. Phys. B 287 (1987) 205 [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Pomarol, D. Zeppenfeld and M. Perelstein, private communications.

  79. K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanumoy Mandal.

Additional information

ArXiv ePrint: 1405.3957

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amar, G., Banerjee, S., von Buddenbrock, S. et al. Exploration of the tensor structure of the Higgs boson coupling to weak bosons in e + e collisions. J. High Energ. Phys. 2015, 128 (2015). https://doi.org/10.1007/JHEP02(2015)128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2015)128

Keywords

  • Higgs Physics
  • Beyond Standard Model